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Abstract-Two approaches to device design, the 
Hopfield Network and Optimized Material Distribu- 
tion (OMD), are compared. The comparison is based 
on a previously published MRI dipole magnet design 
problem. Since this problem is already formulated as a 
material distribution problem, the results focus on the 
optimization procedures used in the two methods, i.e. 
the learning algorithm of the Hopfield network versus 
the conjugate gradient algorithm used in OMD. Re- 
sults of the two methods are presented, and are also 
compared to a previously published simulated anneal- 
ing solution. 

Index  terms-Optimization methods, Hopfield 
networks, Magnetic resonance imaging 

I. INTRODUCTION 

This paper compares the features of two methods of de- 
vice synthesis. The first uses a Hopfield network, which 
has been applied to electromagnetic design previously [l], 
[2] , although the approach used here is considerably dif- 
ferent. The second is the Optimized Material Distribu- 
tion (OMD) method, which uses the conjugate gradient 
method coupled with the Augmented Lagrange Multiplier 
method for handling constraints. 

A simple design problem is used to compare the relative 
performance of each method, and in fact this test problem 
is set up such that both methods optimize the distribution 
of material (coil windings in this case). 

This paper first introduces the test, problem used to 
compare both methods. Then the Hopfield algorithm 
is outlined, followed by a brief description of the OMD 
method. Finally, results are presented, comparing both. 

11. TEST PROBLEM 

The test problem used to compare both methods is the 
optimization of the field homogeneity in a simple dipole 
magnet used for MRI. This problem was introduced in [3], 
where it was solved using simulated annealing techniques. 

In this problem, coils are arranged around a square re- 
gion. Each coil can be switched either on or ofl. The goal 
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is to make the field as homogenous as possible at a set of 
sample points inside the square region. 

This problem possesses several symmetries. Transla- 
tional symmetry reduceF the problem to 2-D. The left 
boundary is a plane of ,anti-symmetry (a homogeneous 
Dirichlet boundary condition) , and the bottom boundary 
is a plane of symmetry (a homogenous Neuman boundary 
condition). Taking this symmetry into account, there are 
180 independent coils, and 9 sample points. 

In the final device, each coil must be either on or 08, 
However, both methods described in this paper expand 
the search space to  include the continuous states between 
these extrema. The requirement of a discrete final state 
is treated as a constraint. 

111. HOPFIELD NEURAL NETWORKS 

A Hopfield net is a fully connected neural network. 
Each neuron Y,  has an internal activity U ,  and fires with 
g(u2)  over a grid of weights w , , ~  to every neuron. 

All information about the problem to be solved is given 
to the net in advance and expressed as an energy function, 
which the net tries to minimize [4]. The use of a prede- 
fined energy function implies that the problem must be 
superposable, so the effect of each neuron on the energy 
function can be calculated independently. 

A .  The Hopfield energy function 

The output signal of one neuron vi = g(uz) corresponds 
to the current in the coil i .  To obtain the desired output 
range 0 5 U ,  5 1 the neurons have sigmoid monotonic 
input-output relations using g ( u i )  = i(1 + tanh(u,)). 

Two terms of the energy function are 

Where dz, ,  and du. ,  are the effect of neuron i on the 
IC- and y-component of the magnetic field a t  test point j 
derived from Maxwell’s equations, and H., and Hv3 are 
the desired values, e.g. the magnetic field. Therefore the 
minimization of E, and Ev forces the components of the 
magnetic field towards the desired values. 
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In the Bopfield net the energy function also includes 
the constraints. During the search the net is allowed to  
use invalid states, e.g. the continuous states between on  
and off. The inbetween states are actively discouraged 
through the use of a penalty function. The term 

E, = c u t  - x u & ,  = C U 2 ( 1 - % )  (3) 
2 2 a 

forces u, to either u,  = 0 or u, = 1. After initializing the 
neurons, the Hopfield neural network tries to minirnize 
the function E = E, + Ey + E,. 

The Hopfield network tends to scatter the on  conduc- 
tors stochastically so they are not grouped together. To 
avoid this, an additional energy term is added which van- 
ishes if the activity of one neuron i equals the activity of 
its n, neighbors given as the list N,: 

E f  = cc 113 - n2%)2 (4) 
t LIEN,  

B. Updating algorithm 

In Hopfield neural networks the weights are not ad- 
justed as the minimization proceeds but instead the 
neurons are changing their states, being updated asyn- 
chronously and randomly one at a time using the following 
updating formula for neuron k 

with At as a factor controlling the learning rate in order 
to avoid oscillations of the process [6]. Through (7) the 
weights can be given to the net. The process terminates 
if the net is in a “freezing” state, i.e. the energy varies 
less than a threshold value. The investigations revealed 
that, indeed, the neurons converged very close to a state 
of either o n  or 00. 

IV. OPTIMIZED MATERIAL DISTRIBUTION 

The Optimized Material Distribution (OMD) method 
is described in [7] and [8]. The essence of this approach is 
to represent devices as a distribution of material. This al- 
lows topologically different devices to be represented with 
the same set of parameters. Therefore an numerical op- 
timization procedure can explore different device topolo- 
gies. This is not possible when a device is represented by 
parameterizing its dimensions. 

Note that the initial state can consist of free space (no 
material anywhere). The optimization will add material 
where it is required in order to  achieve the design objec- 
tives. This eliminates the need for a template device on 
which to base the parameterization. 

Because no template device is required, and because dif- 
ferent device topologies can be explored within the same 
design space, OMD is actually doing design. 

A.  Representation 

The basis idea in OMD is to represent devices as a 
distribution of material. In practice, a deszgn regzon is 
defined, which specifies the region which the device is al- 
lowed to occupy. This can be as simple as a rectangular 
region, although any information about areas required to 
be free of material can be excluded from the design region 
to simplify the objective function. 

The design region is discretized into cells, and a set of 
parameters is assigned to each cell to control the amounts 
of various materials which will fill the cell. This represen- 
tation can be compared to a graphical bitmap image of 
the device, where each ”pixel” (cell) has a single ”color” 
(material), but the net effect is to produce a more or less 
well-defined device topology. Note that during optimiza- 
tion, the material in a cell can vary continuously between 
empty and full (analogous to a grey-scale image). 

The design region for the MRI test problem uses a rel- 
atively coarse discretization, since the distribution of ma- 
terial in this case consists of discrete coils. 

B. Objectsue funct ion 

The objective function is the same as the energy func- 
tion for the Hopfield network, i.e. E, + E,. However, to 
minimize it the conjugate gradient algorithm is used. This 
requires the derivative of the objective function with re- 
spect to the material distribution. In this problem, this is 
easy to calculate since the magnetic field is a linear func- 
tion of the current in each coil. However, note that the 
OMD method is not restricted to linear problems, since 
the derivative of general electromagnetic systems can be 
computed using the adjoint variable method of sensitivity 
analysis. 

6. Soladajicataon Constrasnt 

The constraint term forces each cell to contain only one 
material, in other words to be solid. In this context, free 
space is also considered to  be a solid. For the MRI test 
problem, this is equivalent to forcing each cell to be either 
on (100% current) or off (zero current). 

The constraint term is enforced gradually, by using the 
Augmented Lagrange Multiplier (ALM) method. This 
method performs a series of un-constrained minimizations 
of the original objective function augmented with penalty 
terms. Each unconstrained minimization is performed 
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using the conjugate gradient method. In this case the 
penalty terms are functions of E, defined above: 

PALM = Bx + EV + A, E, + w, E," (9) 

where wi is the weight and A, the Lagrange mupltiplier at 
the i-th ALM iteration. At the end of each ALM iteration, 
the Lagrange multiplier is updated to A,+l = A, + 2w,E,. 

The algorithm is started with the Lagrange multiplier 
set to zero and the weight chosen to make the cost and 
the penalty terms approximately equal. For the MRI test 
problem the initial penalty weight is set to 0.1. 

V. RESULTS 

Both algorithms are applied to the MRI test device, 
with the following results. Fig. 1 shows the final state 
found by the Hopfield net after 2000 updates of each 
neuron. The solid and blank squares represent the on and 
off state respectively, with the current in each coil set to 
I = 1 A. The desired magnitude of the magnetic field at 
the 9 testpoints is H ,  = 0 and Hzr = 36.25811 A/m, which 
are the values calculated from the coil distribution in [3]. 

Fig. 2 shows the behavior of the Hopfield network dur- 
ing the minimization of the energy function E and its 
components. Note that the net reduces the values of E, 
and EV first and then minimizes Ec to force the coils to 
be either on or 08. Table I summarizes the energy values 
after 200 and 2000 epochs in the first three columns. The 
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Fig. 1. The final state of conductors produced by the Hopfield net 
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Epochs 

Fig. 2. The energy function during the minimization process 

Fig. 3. A snapshot of the currents in the conductors (Hopfield net) 

(D) columns inform about the final state with all neu- 
rons set to a discrete value. A snapshot after 200 epochs 
is shown in Fig. 3 where the area of the squares is pro- 
portional to the current. Some units are fully developed 
while other are in an intermediate state. 

Adding the E f  term to avoid stochastic output results 
in the current distribution displayed in Fig. 4. The energy 
values are shown in the c'olumn 5 and 6 in Table I. The 
final total energy surprisingly converged to a lower value. 

Fig. 6 shows the final state found by OMD after 10 
ALM iterations of 10 conjugate gradient iterations each. 
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Fig. 4. Alternative final state produced by the Hopfield net using 
the neighbor penalty term 
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Fig. 5. The energy function during the minimization process (OMD) 
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TABLE I Comparison of the different methods with energy functions 
Method Hopfield neural network Hopfield using (4) OMD method S&T[3] 
Iterations 200 2000 2000 1100 1100 100 100 

Continuous/Descrete C C D C D C D D 

E, 7.3901e-3 2.8398e-5 0 5.3033e-3 0 2.407e-3 0 0 
E, + Ev 6.7590-5 8.9106e-5 1.0573e-4 6.9111e-5 9.606e-5 0.858e-4 1.501e-4 0.867e-4 

E8 0.29247 0.5598 
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Fig. 6. The final state of conductors produced by OMD 

The penalty weight was equal to 0.1 and was constant 
throughout, and the final value of the Lagrange multiplier 
was 0.0905. Fig. 5 shows the field homogeneity and solid- 
ification constraint value throughout the optimization. 

VI. DISCUSSION 

Several additional experiments were performed in an 
effort to understand these results. 

Sampling the field at more points resulted in essentially 
the same homegeneity value, indicating that 9 sample 
points is sufficient. 

More insight is gained by trying to determine the na- 
ture of the continuous search space between different coil 
configurations. One way of doing this is to take a point in 
the search space midway between the Hopfield and OMD 
solutions (i.e. by averaging the currents in each coil). It 
turns out that, while this point does not satisfy the dis- 
creteness constraint, the homogeneity of this point is bet- 
ter than either the Hopfield or the OMD solution In fact, 
this is expected since the field is a linear superposition of 
the fields produced by each coil, so any linear combina- 
tion of highly homogeneous solutions must also be highly 
homogeneous, and in fact the errors will tend to cancel 
out, so the homogeneity will be better (i.e. all configura- 
tions are in the same basin of attraction in the continuous 
search space). Of course, this doesn't help to find the op- 
timal solution, since these intermediate configurations do 
not have discrete coil states, but it does give an idea of 
the nature of the continuous search space. 

VII. CONCLUSION 

The paper has provided a comparison of two optimiza- 
tion approaches for a "standard" benchmark. 

The basis of comparison between the two methods lies 
in how well they generate configurations in which the on 
coils are grouped together. In this respect, both the orig- 
inal simulated annealing solution and the Hopfield net- 
work without special constraints performed poorly. How- 
ever, with the neighbor penalty term the Bopfield network 
achieved some coil grouping with a homogeneity superior 
to that achieved with OMD. OMD did have a slightly 
better coil grouping, which may have more to do with the 
way the solidification constraints (to force a discrete final 
state) were enforced than with the stochastic nature of 
the Hopfield optimization. 

The results show that both achieve similar results but 
the cost of the Hopfield is much less than the cost of OMD. 
However OMD is more general since no added terms were 
required to produce a grouped result. 
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