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A&tract- This paper presents the calculation of 
the induced currents and forces for a 3D non-linear 
eddd current field problem with ferromagnetic moving 

is used in combi- 

~ I. INTRODUCTION 

The calculation of braking and attractive forces for 
magbetic levitation systems is one of the basic demands 

1 consists of 
four hybrid magnets and a permanent excited linear syn- 

design of levitation magnets. The calculated mag- 
system displayed in Fig. 

nous machine with an iron-less stator [l]. To guar- 
e long operation periods and low energy consumption 

the lcurrents of the hybrid excited magnets (NdFeB per- 
marlent magnets combined with an electrical excitation) 
are Lontrolled to zero. The rail has a U-shape to use the 
reldctance force for the lateral guidance of the vehicle. To 
red$ce material costs the rail is made of solid steel and 
doe1 not suppress eddy currents. Since the stator is not 

over the whole length of the lane, eddy currents 
braking effects caused by the motion of 

are calculated by a 

lane 

yoke 

Fig. 2. Hybrid levitation magnet 

and different gauging methods have been incorporated to  
achieve a stable, fast and precise solution. These meth- 
ods will be compared with respect to  solution time and 
accuracy. For this reason the induced currents and brak- 
ing forces of one of the levitation magnets (Fig. 2 )  are 
calculated. In contrast to [3] 2D calculations can not, be 
adapted by using different calculation parameters, so that 
a 3D calculation is absolutely required. 

11. FORMULATION 

A .  Problem definit ion 

The structure of the electromagnetic field problem of 
the hybrid levitation system is simplified shown in Fig. 3 .  
To get a static field problem, the moving vehicle is chosen 
to be the local reference system of the electromagnetic 
model. So region 01, representing the rail of the levita- 
tion system, is moving with a relative velocity to the fixed 
surrounding regions 0 2  and 0 3  representing the real mov- 
ing parts of the geometry. Because the geometry of the 

loadarea , 

ap sensor 
~ ~~ 

Fig. 1. Magnetic levitation system 

\ - 
regionn, ~ "L, 

v, , eddy currents J,= CT (E, + vi x BI)  

i periodtcd boundary conditions / 

Fig. 3. Magnetostatic field problem with a moving conductor 
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moving part is invariant in the direction of motion, the 
Maxwell equations for region RI are: 

(1) 
(2) 

(4) 
in i21 (3) J' = + + - t x X )  I ( 5 )  

c u r l 2  = 6 
d ivg  = 0 

curl* = J' 
d i v g  = 0 

ET = v (B)  2 I 
In the non-moving parts of the chosen reference system 
the excitation of the system may result from either per- 
manent magnets or electrical source currents. All non- 
moving regions, equal if they represent coils, permanent 
magnets, non-linear iron or air, obey the Maxwell equa- 
tions of a magnetostatic field problem and may be com- 
bined in 0 2 :  

(7) 

( 8 )  in 0 2  i (9) 

1 (12) 

c u r l 2  = 

divd = 0 
I? = v (B)  (&2?) 

The interface boundary conditions between the moving 
and non-moving part are described as follows: 

(10) 

on r12 (11) 

fix(21-ET2) = 0' 
ii (dl - 2 2 )  = 0 

6 J ;  = 0 

The outer boundary of the model is divided into three 
parts. In the direction of motion periodical boundary 
conditions are defined. The other boundary conditions 
are described by a vanishing normal component of the 
flux density on rB or a vanishing tangential component 
of the magnetic field intensity on Px: 

2.2 = o o n r B  (13) 
6 x 2  = 0' o n r H  (14) 

B. Potential formulataons 

In order to  satisfy equation (l), (5) and (8) the A ,V 
formulation is used in 01 and the A' formulation is used 
in 0 2 .  Choosing these potentials equation (1)-(9) can be 
written as follows: 

curl v curl A 
- (av'x curlA- QgradV) = 6 in RI (15) 

div ( d x  curlA-agradV) = 0 inR1 (16) 
curlvcurl&-curlv& = i n 0 2  (17) 

The boundary conditions (10)-(14) result in: 

ii x (VI curl AI - v2 curl 2 2  + v2&) = 0' 
ii . (curl AI - curl A2) = o 

f i  (a; x curl A1 - ggradql )  = 0 
i i . cur lA = o on rB (21) 

ii x ( v c u r l i -  vdr) = 6 on rH (22) 

Enforcing the continuity of A' on 
component of A' to  be constant on 

Ai = onr12 and (23) 

i i x A  = 8 o n r B  , (24) 

the boundary condition (19) and (21) are automatically 
satisfied and can be omitted. In fact equation (15)-(18), 
(20) and (22)-(24) gives a complete potential formulation 
for equation (1)-(14). But the solution for the potentials 
is analytically not unique, because the divergence of A" is 
still vague. 

C. Coulomb gauge 

To get 2 unique solution for the potential A' the diver- 
gence of A has to  be determined as well as the free normal 
component of A' on r2: For this gauge of A' the Coulomb 
gauge is chosen in this paper: 

d i v i  = 0 in RI  and 0 2  (25) 

6 . A  = o o n r H .  (26) 

It is important to  mention that gauging is not necessary 
to get a numerical solution for the field problem described 
by equation (1)-(14), but has an effect on the convergence 
of the solution process and on the accuracy of the solution. 

111. NUMERICAL IMPLEMENTATION 

Applying the Galerkin weighted residual method using 
the shape functions as weighting functions to  the second 
term of (15) leads to: 

This term forces the matrix to  be badly posed and causes 
violent oscillations in the solution process. These oscilla- 
tions can be enormously reduced by upwinding and ad- 
ditionally by a stabilized BiCG procedure [4]. In regions 
of high permeability the stability of the solution can be 
additionally optimized by enforcing &e Coulomb gauge. 
In [5] it is shown that the Coulomb gauge can be obtained 
in the numerical solution by adding (grad v div A) to  equa- 
tion (15) and (17) in region 01 and R2. But the advantage 
of a better convergence in this case costs accuracy of the 
field solution especially if the iron regions of the moving 
parts are not saturated, so that the 
ences between iron and air are h 
numerical formulations give 4 PO 

tion of the given field problem, which use all the same 
upwind scheme but differ in the way of implementing the 
Coulomb gauge. Only for two of them convergence is ob- 
tained for the given levitation system in the considered 
speed range. 
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A.  F ~rmulation without Coulomb gauge 

that t e whole FE-formulation looks as follows: 

Here the entire formulation can be given as follows: 

v curl fit . curl A' + vo div gx . div A' In t is case the Coulomb gauge is not implemented, so H 
- 3% . ~ v '  x curlA'+ . ugradV dR = 0 (28) U grad N, . v' x curl A'- (T grad N, . grad V 

a1 
1 

. v' x curl2 - PgradN, J' 
a1 

(v curl fit . curl A' + VO div 3% . div A' 

v curl 3% . curl A' - v curl zt 3,. - 3% . J ,  dR = 0 (30) '> 
of the CG procedure for this case is al- 

taking velocity effects into account. 

v d i v i  = 0 in CLl and% (31) 

Y curl 3% curl r' + Y div 3% div A' 

U curl f i x  curl A' + v div 3, div A' 

ergence of the CG procedure without any veloc- 

accuracy of the results is not as good as in sec- 
As well as in section A the solution process does 
verge considering small velocities because of the 

- vcur l f i , .  &. - GZ. J ,  dR = 0 (38) 

Because of the high permeability of the iron parts the 
Coulomb gauge is stronger fortified by adding (VO div A) 
instead of (v div A'). So the convergence of the CG proce- 
dure is considerably better than in the first two formulla- 
tion. Velocity effects can be considered well. But like in 
section B the accuracy of the results is not as good as in 
section A. 

'> 

D. Fortified Coulomb gauge in moving conductor 

In this case the Coulomb gauge is implem_ented only 
in the moving part RI  by adding (grad uo div A) to  equa- 
tion (15). By additionally enforcing (VO div A' = 0) on rl:t it 
can be similarly shown that the divergence of A' vanishes 
in 01: 

vo div A' = 0 in RI (39) 

So the entire formulation can be described by: 

U curl fii . curl A' + vo div fii . div A' S (  
Sal 

- 3% uv' x curlA+ sx U gradV dR = 0 (40) 

U grad N,  v' x curl A' - U grad N,  . grad V dR = 0 (41) 

) 
Jc > 
sc ">  
a1 

v curl fit . curl A' - v curl 3% . &. - dt . J ,  dR = 0 1\42) 

a2 

The convergence of the solution process is better tlhan 
in the first two formulations so that velocity effects can 
be considered. Because of the more accurate formula1,ion 
in the non-moving parts the accuracy of the results are 
better than in section C. 

this case the Coulomb eauge is implemented in RI  

= 0 on 

IV. RESULTS 
A)  to  equation (15) and (17). 

enforcing 2 ' A' 0 on r H ,  VO div The considered mesh of the hybrid levitation magnet 
&own in Fig. 2 consists of about 5OOOO first order tetra- Of (WO div 4) on r12 it can be 

hedral elements with 10000 nodes and about 32000 degree 
uodiv A' = 0 in RI and02 (35) of freedoms using the A', V- A' formulation. Calculations 

of A vanishes: 
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Fig. 4. Absolute value of 2 at  5 m/s (8 = 0 A) 

were done for the 4 formulations once with a permanent 
magnet excitation and once with a hybrid excitation with 
a total number of ampere turns 0 = -600A. Fig. 4,5 
and 6 show the numerical field solutions of the flux den- 
sity value, the resulting eddy currents and the electrical 
scalar potential V in the rail. It is recognizable, how the 
flux density refuses to follow the excited field and how the 
distribution of the eddy currents has to look like to cause 
this effect of resistance against changes of the exciting 
field. Fig. 7 and 8 display the attractive and braking force 
curves calculated by the Maxwell stress tensor for the 4 
different gauging methods in the A, V -  Aformulation com- 
pared with a scalar potential formulation, which leads to 
the best result in the non-moving case compared to mea- 
surements. As pointed out in section 3 only the two A, 
V- A" formulations with the fortified Coulomb gauge con- 
verge over the full speed range. Formulation 111 C needs 
twice as much CG-steps for each non-linear calculation 
step as formulation I11 D, but this formulation impresses 
with its accuracy compared to formulation 111 A without 
upwinding and Coulomb gauge. 

0 133E+07 
0.167E+07 
0 ZOOE+O7 
0.233E+07 
0 267E+07 
0 300E+07 

Fig. 5. Induced currents f i n  the rail at 5 m/s (6 = 0 A) 

-0 023334 
-0 01923 
-0 015126 
-0.011022 
-0 006919 
-0 002815 
0 001283 

0 009497 
0 013601 

a 005393 

Fig. 6. Electric Scalar Potential V in the rail at 5 m/s (6 = 0 A) 

?U11 . 
* 

speed (mi\) 

Fig. 7. Attractive and braking forces for 6' = 0 A 
70 I I 

Fig. 8. Attractive and braking forces for 8 = -600 A 

V. CONCLUSIONS 
In this paper a complete formulation is given to solve 

magnetic moving conductors eddy current field problem 
excited by either permanent magnets or electrical source 
currents. Dependencies of the convergence and the ac- 
curacy on the implementation of the Coulomb gauge are 
described. The given formulation with four different gaug- 
ing methods was applied to a magnetic levitation system 
to compute its electromagnetic field, induced currents and 
forces and to compare the different calculation methods. 
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