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Abstract - Stability domains of ferroresonant 
oscillations must be computed and, if needed, 
countermeasures must be taken in order to avoid serious 
damage to the power networks' equipment. In this paper, 
Clarke components are used to write the equations of a 
representative three-phase circuit under a canonical 
form and give a simple physical interpretation of the 
three-phase ferroresonance phenomenon. A method is 
proposed to approximate the quasi-periodic oscillations 
by periodic ones. The solutions and their domains of 
stability are computed by the harmonic balance method. 
An application to a field case is presented. 

1. Introduction 

The ferroresonance phenomenon in power networks can 
cause dangerous overvoltages and overcurrents, which can 
lead to serious darnage to the equipment. Therefore, it has to 
be avoided by all means. The cause of the phenomenon is an 
oscillation between a capacitmce and a nonlinear 
inductance. Different types of ferroresonant oscillations 
occur, depending on the configuration of the network. An 
overview of possibly dangerous network configurations is 
given in [l]. All of them feature the existence of different 
stable solutions, for the same network parameters. The 
initial conditions, and events such as short circuits, 
determine which of these solutions will be attained. 

The ferroresonant oscillation is said to be single-phase, if 
the three-phase network can be reduced to a one-phase 
represen tation. I. A. Wrigh t [2] has published experimental 
results and physical explanations of the influence of the 
grounding on this representation. A comprehensive study of 
single-phase ferroresonance is found in [3], where a method 
has been developed to compute directly the domain in some 
parameter space where ferroresonance can occur. The 
introduction of a detailed core model has given computation 
results in good accordance with full scale tests [4]. 

In electrical networks with isolated neutral, it is not 
possible to make a reduction to a single phase network. 
Typical configurations of isolated networks where three- 
phase ferroresonance has been observed are power plants 
auxiliaries, distribution networks in factories, public 
distribution networks temporarily isolated. 

Although the methods described in this paper could be 
applied to systems with three-phase transformers (magnetic 
coupling between the phases), we will only consider the 
simple configuration shown on fig.1 . The three-phase 
voltage supply {U1,U2,U3} is considered to be balanced, CO 
is the zero sequence capacitance of a feeding cable and T is 
an inductive voltage transformer (V.T.). 

A commonly used means to avoid three-phase ferro- 
resonance consists in forming a delta connection with the 
tertiary windings of the V.T. closed on a damping resistance 
[ 5 ] .  The aim of this paper is to describe an efficient method 
to determine if there is a risk of ferroresonance and to com- 
pute the damping circuit in order to avoid the phenomenon. 95 SM 4 2 0 - o  PWRD A paper recommended and approved 

by the IEEE Transmission and Distribution Committee 
of the  IEEE P o w e r  Engineering Society for presentat- 
ion a t  t h e  1995 IEEE/PES Summer Meeting, July 23-27, 
1995, Portland, OR. Manuscript submitted December 
21, 1994; made available for printing June 22, 1995. 
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. _ _ _ _ . . _ _ _ _ _ _ _ _  

Fig.1. Network with isolated neutral 
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2. Models and Equations 

In the study presented here, the model of the voltage 
transformer is chosen very simple and consists of a series 
resistance %, a shunt resistance Rp to represent the iron 
losses, the nonlinear magnetization characteristic i($) and an 
ideal transformer which represents the magnetic coupling 
with a tertiary winding. The inodelling of tlie nonlinear 
inductance is essential to study ferrorescnance. The 
examples described below relate to a 6.6 kV V.1'. . The least- 
squares identification of the saturation characteristic from 
the available data led to a fifth-order polynomial : 

5 (1) i($) = k l *  (I + k5*@ 

The three-phase network with tertiary vtinding and 
damping resistance Q is shown on fig.2 The three 
capacitances CO have been replaced by one capacitance 3 CO 
placed between both neutrals. It can easily be proven that 
this does not alter the waveforms at the tenriinals of the 
nonlinear elements. 
This network can be described by a system of four 
simultaneous differential equations (2-3) it1 the state 
variables { 41, b, $3, uI1 1 : 

(- 1 + -)(-+ 3 d4l - d42 +-q d4 -3co- = 0 (3) Rp Rd dt d t  d t  d t  

In order to write this system of equations under canonical 
form : - 

dx - - 
- =  F(x , t )  , 
d t  

we use the normalized Clarke transfonnation : 

(4) 

1 v1 

I v2 

i v3 

'. - - - . - .  . . . . . . . . . _ I  

Fig.2 Full network representation 

1 1 1  - -- 
J3 A - z  

* 

1 

(5)  
vo I 
vcI I 
vp J 

where v = U , i or (I . The system (2-3) is then rewritten in 
the variables {q0, (Icl, (Ip, uIl}, each of the currents io, i,, ip 
being a function of the three flux variables : 

0 
R p  Rd 

0 1+ - Rs 0 

R 
R P  

0 0 l + L  
RP 

r i ~0 -Rs.i0--&un 

= I -Rs*ia 

( 6. a) 

(6. b) 

(6. c) 
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- 0  (7) io + ( -+ - ) - -&c0- -  1 3 do0 du* 
R, R, dt at 

with the Clarke components of the voltage supply given by 

uo = 0 ua = U sin (2 K fo t) (8) 

where U is the rms line voltage of the supply, and taking as 
phase reference the positive passage through zero of phase 1. 
From (6) and (7), the canonical form (4) of the system of 
equations is easily obtained. 

up  = - U cos (2 x fo t) 

Let us remark that, in the case of different parameters in 
the three phases, a transformation dependent on these 
parameters ought to be used to reduce the system of 
equations into canonical form : the Clarke transformation 
could not be used to this purpose in that case. 

3. Physical interpretation 

The expression of the circuit equations using the Clarke 
components allows to give a simple physical interpretation 
of the three-phase ferroresonance phenomenon : equations 
(6.4 and (7) describe the behaviour of the o component 
circuit shown on fig. 3.a (identical to the zero sequence 
circuit) : equation (6.b) describes the behaviour of the a 
component circuit shown on fig. 3.b ; in the same way, 
equation (6.c) corresponds to the p component circuit shown 
on fig. 3.c. 

If the inductances are linear, these three circuits are 
independent. Any transient will damp in such a way that the 
oscillation in the o component circuit will vanish and that 
the permanent evolution in the a and p circuits will be 
purely sinusoidal at the frequency of the voltage source. 

If the inductances are nonlinear, these elements introduce 
a coupling between the three circuits. So, under certain 
circumstances, energy may be transfered from circuits CI and 
p, where there is a voltage source, to the o component 
circuit and sustain a permanent oscillation. The frequency of 
this oscillation will be equal to or near a multiple or sub- 
multiple of the frequency of the voltage source. The 
amplitude of this o component oscillation will adjust itself in 
such a way that the resonance frequency of the circuit is one 
of the frequencies mentioned above. Which oscillation mode 
is reached depends upon the initial conditions. 

The damping resistance 4 only appears in the o 
component circuit. Such a resistance, if carefully designed, 
may damp the o component oscillations and avoid any 
sustained ferroresonance. 

Fig 3.a o component circuit 

Fig 3.b a component circuit 

Fig 3.c p component circuit 

4. Oscillation modes 

The various oscillation modes that can appear in the 
circuits considered here were already described in  the 
literature [5,6] and are listed in the table hereafter. 

The modes N, UF and H-3 are purely periodic while QP- 
112 and QP-2 have harmonic Components whose frequencies 
are cornbinations of two basic frequencies that, in general, 
are incommensurable. 

When varying a parameter in the circuit (voltage source 
amplitude, zero sequence capacitance, ...) a cascade of 
bifurcations inay occur, with period doubling, and may lead 
to chaotic behaviour. 
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The modes UF and QP-1/2, which are most likely to occur 
in practice, are now briefly described in order to show the 
zero sequence character of the ferroresonant oscillation. 

Unbalanced Fundamental Mode 

The unbalanced character of the UF mode in the three 
phases is related to a displacement of the neutral of the 
voltage source with respect to the neutral of the 
transformers. 

Fig. 4 gives a representation of a typical evolution in the 
Clarke components state space : in the o component plane 
(fig. 4 above), the state variables $o and uI1 os5llate at the 
resonance frequency of the o component circuit (cfr fig 3.a) 
which is equal here to the frequency of the source ; in the 

- 4 ~ )  plane (fig. 4 below), the evolution is nearly 
identical to that of the normal mode (the markers on the 
curves correspond to successive positive passages through 
zero of phase 1 of the voltage source.). 

Quasi-periodic 112 

Fig. 5 shows the evolution of the Q0 and the Clarke flux 
components for a typical quasi-periodic 1/2 mode. The state 
variables U, and o0 are almost sinusoidal at a frequency f l  
slightly lower than f d 2  : this slip can be visualized by the 
slow shift of the markers (positive passages through zero of 
phase 1 of the voltage source). The state variables and 0~ 
are almost sinusoidal at frequency fo with a slowly varyibg 
mean value at frequency f2 = fo - 2 f1. Fig. 6 shows the 
evolution during 10 periods of the source in the same state 
planes as above : in the o component plane ((Io - un>, the 
resonance at frequency f1 can be seen ; in the (oG - $@) 
plane, one has the source driven oscillation (solid line 
circles) with a slowly varying shift (circle of markers drawn 
for 36 periods). 

1 7  100 h 

-60 -40 -20 0 20 40 60 0.0 0.2 0.4 0.6 0.8 1.0 
flux 4o (wb) time (s) 

- 4 0 1 ,  , , , , . , I , , , , , , , , , . , I  
-60 -40 -20 0 20 40 60 0.0 0.2 0.4 0.6 0.8 1.0 

Fig. 4 Case UF : state space representation Case QP-1/2 : time representation of (Io and (Ia 

-40 

flux (wb) time ( s )  

Fig. 5 
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Fig. 6 Case QP-112 : state space representation 

The amplitude of the main harmonic components is given 
in the next table : 

1 -  - I 

124.32 I 2 fo + fi I 0.000 I 0.00 I 0.1 1 I 0.1 1 

It inay be seen that the harmonic components of the 
($o - uIl) variables do not appear for the - $p) variables 
and conversely. The corresponding $a and $p components 
have the same amplitude and a phase shift of d 2 .  The same 
holds for the corresponding c1 and j3 cornponents of the 
current. With exception of the fo component, the CI (resp. j3) 
components of the current are shifted in phase over - d 2  with 
regard to the corresponding a (resp. p) components of the 
flux. Therefore, they can be considered as energy sources at 
non-fundamental frequencies in the a and p circuits 
respectively. 

5. Computation of the periodic oscillations 

111 order to compute periodic oscillalions of the circuit of 
fig. 2, we use the harmonic balance method, which is a 
particular case of the Galerkin method : the flux in each 
non 1 in ear inductance (magnetizing branch) is represented by 
a limited Fourier series : 

$ ( t )  = Qo + Ok,c coskwt i- @k,s sinkwt (9) 
ke K 

where k is an integer or a fraction. The corresponding 
Fourier coefficients for the current in this branch are given 
by integration froin the magnetic characteristic i($) of this 
inductance : 

2 

T O  
Ik,c = - J' i($(t)) coskwt d t  (10) 

and with similar expressions for the sine terms Ik,s and for 
the DC component 1,. 

The h,mnonic balance method consists in introducing the 
limited Fourier series in  the differential equations of the 
circuit and forcing to zero the contibutions to each 
considered hannonic component. 111 this way, an algebraic 
system of nonlinear equations in the Fourier coefficients is 
obtained and inay be solved by using a general purpose 
routine. A first attempt in  this way is found in [7]. 

When a periodic oscillation is computed, its stability must 
be detennined. A general inethod is to compute the 
characteristic exponents of the linearized variational 
equation of the initial system. But  the method described in 
[3] is easier to use. Hereafter, we only give the result without 
demonstration. 

Let us consider a set K' of hannonic components including 
the set K used for the computation of the periodic oscillation 
and 
- even hannonic tenns if K has none 
- hnnnonic term with frequencies that are ~nultiples of half 

the fundmental frequency of the oscillation otherwise. 
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Using the harmonic balance method, the equations 
corresponding to the set K’ may be written : 

(11) 
- - 

Fi’( ,...,ad ) = 0 i=l ,  ...)n’ 

where the 6j are written for the terms Go 

When computing periodic oscillations in function of the 
voltage source, the points where the relation 

, @’k,s , 

det[%) = 0 

50.00 
75.00 

100.00 

is satisfied define the stability limits of the oscillations i.e. 
the points where bifurcations occur. 

This property allows to compute directly Ihe stability 
domains of the ferroresonant oscillations : adding (12) to the 
system of equations obtained by the harmonic balance 
method and considering, beside the Fourier coeHicients, the 
voltage source as unknown, a new system of equations is 
obtained whose solutions give the Fourier coel%lcients and 
the source voltages corresponding to the stability limits of 
ferroresonant osciIlations. 

I 125.00 1 I 0.067 I 0.15 1 0.11 1 0.00 I 

6. Approximation of quasi-periodic oscillations 

The harmonic balance method assumes that the evolution 
is periodic and considers some a priori fixed harmonic 
components. Therefore, quasi-periodic oscillations can not 
be dealt with. A way to overcome this is to approximate the 
quasi-periodic oscillations with periodic ones. Let us 
consider again fig. 3. If the series impedarrces Rs are 
replaced in the three circuits with three resistiiices Q, R, 
and Rp considered independent, the slow frequency fi is 
approximately proportional to R, . ( K ~ R ~ ) ”  (this is not 
true if R, tends to zero). If one of the resistances R, or Rp 
is set to zero, the quasi-periodic oscillations become 
periodic : the flux @a (if Q=O) or @p (if R =0) is directly 

constant. 
related to the sinusoidal source, with an ar ! itrary additive 

Choosing RP = 0 , (5c) can be integrated. With initial 
condition zero, this yields : 

T T  

With the same circuit parameters as those used to illustrate 
the QP-1/2 mode (paragr. 4), the amplitude of the main 
harmoiiic components of the periodic 1/2 oscillation are 
shown in the table given hereafter. It may be observed that 
the amplitude of the predominant harmonics are very close 
to those obtained for the QP-1/2 mode. The calculation of 
the currents shows the appearance of a DC component in the 
p circuit, whereas the DC component of the current is zero 
in the o and the a circuits. 

Another way of approximating the quasi-periodic oscilla- 
tions consists in applying the harmonic balance method 
directly to the original system of equations (without simplifi- 
cation), by taking, for the QP-1/2 mode, K = { 0, 1/2, 1, 3/2, 
... }. We have observed that numerical results are slightly 
less accurate with this method than with the first one. 

7. Field case 

From time to time, ferroresonance phenomena are 
observed in feeding networks of power plants auxiliaries or 
distribution networks within factories. The example 
described hereafter concems the auxiliaries of a pumped 
storage power plant. Sometimes, when energizing the 6.6 kV 
cable feeder, a quasi-periodic 1/2 phenomenon was recorded 
with a beat period of 2.72 s (136 periods of the supply 
voltage). 

Data received from the manufacturer permitted to determine 
the parameters of the VT : % = 700 Q , Rp = 2.0 MQ , 

k l  = 71.8 A/Wb5. The stability 
domains in the plane ( U , CO ) of the various ferroresonant 
modes were computed for the circuit without damping 
resistor. The results for the UF and QP-1/2 modes are 
shown on fig. 7 . Big markers represent limit points obtained 
by time simulations, whereas small markers correspond to 
the direct calculation explained in paragr. 5 and 6. It may be 
seen that the limit obtained by approximating the quasi- 
periodic modes by periodic ones (dashed line) is very close to 
that obtained without this approximation (solid line) : a 
small discrepancy appears in the region where f2 is not very 
small with respect to fo . 

The zero sequence capacitance in the plant was unknown. 
Simulation of the QP-112 mode for the nominal voltage and 
various capacitances showed that the measured beat period is 
obtained for CO = 300 nF (point A on fig. 7). The 
computation of stability domains of the QP-1/2 mode taking 
into account danping resistors in the delta connection of the 
tertiary windings showed that, choosing Q = 0.5 Mi2 
(related to the primary side of the V.T.), the risk of 
ferroresonance disappears ( fig. 7 : dotted line). 

A/Wb , k5 = 2.58 
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Fig. 7 Stability domains of ferroresonant oscillations 

8. Conclusion 

A basic three-phase network with isolated neutral has been 
considered. In such a situation, the interaction between the 
saturable voltage transformers and the capacitances of the 
circuit may lead to three-phase fenoresonarice phenomena. 
A comprehensive physical interpretation is found by using 
the Clarke transfonnation : they correspond to resonant 
oscillations of the o component (zero sequence) circuit ; 
these oscillations are sustained due to the coupling with the 
circuits of the a and p components introduced by the 
nonlinear reactors. 

The harmonic balance method, completed by an equation 
expressing that the determinant of a Jacobi,an is equal to 
zero, has been used here. When compared with time domain 
simulations, this method appears particularly appropriate for 
a rapid determination of the stability domains of the different 
ferroresonant oscillation modes in the plane (source voltzige 
U - zero sequence capacitance CO) and to design a damping 
circuit. 

A slight modification of the system parameters allows a 
study of the quasi-periodic oscillations by forcing a periodic 
behaviour. 

Finally, a field case has been presented. 

The model of the voltage transformers used in this paper is 
rather crude. A more detailed representation will be included 
in the near future in order to get quantitcztively more reliable 
results. 

References 

[l] N. Germay, S. Mastero, J. Vroman, "Review of Ferro- 
Resonarice Phenomena in High Voltage Power Systems 
and Presentation of a Voltage Transformer Model for 
predetermining them," CIGRE 1974, report 33-18. 

[2] I.A. Wright, "Three-phase subharmonic Oscillations in 
Symmetrical Power Systems," IEEE Trans. on PAS 
Vol90, May-June 1971, pp 1295-1304 

[3] N. Janssens, "Cailcul des zones d'existence des regimes 
ferror6sonants pour un  circuit monophask," IEEE 
Canadian Communications & Power Conf., Montreal 
18-20 Oct 1978 Cat NO78 CH 1373-0 REG 7, pp 328-331 

[4] N. Janssens, A.. Even, H. Denoel, P-A. Monfils, 
"Detennination of the Risk of Ferroresonance in 
High Voltage Networks. Experimental Verification on a 
245 kV Voltage Transformer," Sixth International 
Symposium on High Voltage Engineering. New Orleans, 
Aug 28 - Sep 1 1989. 

[ 5 ]  H.A. Peterson, Transients in Power Systems, New York: 
Wiley, 1951, pp 265-279 

[6] C. Bergmann, "Grundlegende Untersuchungen uber 
Kippschwingungen in Drehstromnetzen," ETZ-A Bd 88 

[7] A.J. Gennond, "Computation of Ferroresonant Over- 
voltages in Actual Power Systems by Galerkin's Method," 
IEEE PICA 1975 Conf., New Orleans, pp 127-135 

(1967) H.12, pp 2!92-298 

Biographies 

Nocl Janssens was born in 1948. He is Electrical Engineer from the University 
of Louvain in Belgium (1971) and obtained the Ph.D. degree in 1981 
(modelling of magnetic hysteresis and study of ferroresonance). From 1981 to 
1983, he worked at ACEC (Charleroi) as head for R & D in the On Load Tap 
Changer depnnment. From 1978 to 1981 and since 1954 he is with Laborelec. 
where his main fields of interest are the modelling, simulation and control of 
Power Systems. He k also teaching at the University of Louvain (L.ouvain-la- 
Neuve) in the Electrical Engineering department. 

Thierry Van Cnenenbroeck was born in 1966. He graduated in 1989 as 
Electrical Engineer from the Katholieke Universiteit Leuven. From 1990 to 
1992 he worked as lecturer ru the Anton-de-Kom University of Surinam. From 
1992 on, he is working at K.U.Leuven towards a Ph.D. degree on ffuee-phave 
ferroresonance in distribution networks. 

Daniel Van Dommelen (SM '78) is Electrical Engineer from the K.U.Leuven 
in Belgium, has an MSc. in Electrical Engineering (U. Wisc.), and a PhD from 
the K.U.Leuven. Since 1977 he is full professor at this university and head of 
the laboratory for Power Systems, High Voltage and Electroheat. He is author 
of a book and of numerous publications in both national and international 
journals. He is chairman and Belgian representative in the ERE Committee of 
the UIE. He has been chainnan of the IEEE Benelux Seclion, and is a member 
of IEEE PES, CIGRE, SEE and national electrical engineering societies. 

F6licien Van De Aleulebl-oeke (SM'89) was born in 1940. He received the 
Electrical Engineer dzgree (Electronics) from the Catholic University of Leuven 
(K.U.Leuven), Belgium, in 1963. Since 1964, he has been with Laborelec, the 
Belginn Laboratory of the Electricity Industry, successively Chief Engineer in 
charge of turbogenerators automation and system dynamics, head of the 
department "System dynamics and protections" (1987), head of the Electrical 
Division of Laborelec (1988). Since 1994, he is with Electrabel, where he is 
director of the HV Transmission Network exploitation. 

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on August 07,2020 at 09:51:25 UTC from IEEE Xplore.  Restrictions apply. 



1553 

Question 1 : In order to get the best computational 
efficiency, the set of hannonic components, used to compute 
an oscillation mode, is particular to this mode. The 
predominant coqonents can be identified using a FFT OII 

time sirnulatio~i results. For instance, the unbalanced 
fundamental mode was represented by the cornpoileiits I, 3 , 
5 , 7 and 9 whereas the quasi-periodic 112 mode was 
represented by the components 0 ,  1/2, 1 , 3J2, 2 and SJ2. 

Question 2 : The combination of the harmonic balance 
equations with the stability criterion gives, for a fixed set of 
circuit parameters (voltage source frequency, capacitance, 
resistances, magnetic characteristic, darnping resistance), a 
bound‘uy of the voltage source amplitude interval (and the 
corresponding harmonic components or the fluxes) where an 
oscillation mode is stable. Succeuive calculations perforincd 
with different values of the capacitance give the boundary 
line of the stability domain in the plane (voltage source 
amplitude - capacitance). The solution of a calculation is 
used as initial point for the next one. 

Question 3 : The aim of the harmonic balance method is to 
cornpute directly periodic oscillations. In this way, the 
calculation of the transient evolutions is avoided. This 
method does not allow to determine the final oscillation 
reached starting from given initial conditions. Thc domain 
of attraction of each stable steady state solution inay only he 
determined by nunmous time simulations. However, the 
limits between the basins of attractions are fractals and tlicir 
computation is cumbersome. Some examples are given in the 
book “Nonlinear Oscillations in Physical Systems” by C. 
Hayashi (Mc Graw Hill, 1964), chapter 10. 

Discussion 

VITALY FAYBISOVICY FPS Consulting, Los Angeles, CA.: 

This paper describes using of Clarke components to write the 
equations of a representative three-phase circuit undlx a canonical 
form and give a simple physical interpretation of the three-phase 
ferroresonance phenomenon. The solutions and their domains of 
stability are computed by the harmonic balance method. 

The authors’ comments to the following questiore would be 
greatly appreciated: 

1)For using harmonic balance method to calculate of the stability 
domains the number of anticipated harmonic:; and their 

Erequencies should be chosen in advance. According paragraph 4 
of this paper five different modes of operation with different 
harmonics content can be expected. How the authors chose 
anticipated harmonics to built stability domains for different 
modes of oscillations? 

2) Accordiiig paragraph 5 of the discussed paper the harmonic 
balance method permits to compute the stability domains in 
coordinates of Fourier coefficients (harmonic amplitudes) and 
source voltage The stability domains at Fig 7 are presented for 
voltage source - capacitance coordinates. How the harmonic 
balance method was used to receive these stability domains? 

3) From Fig. 7 it is evidently that stability domains for different 
modes of ferroresonance oscillations are overlapped. This means 
that for some combinations of voltage source mplitude and 
circuit capacitance the Up or QP 112 modes of oscillationcan be 
expected. Is it possible to predict the anticipated mode of 
oscillation in such area and can harmonic balance method be 
used for such study? 

Manuscript received August 18, 1995. 

From a practical point of view, due to the uncertainty about 
the initial conditions and about the various even8 that can 
affect the system, the best way to avoid ferroresonance is to 
be sure iha! Icrroresonance cxinot occur, whatever the initial 

N. J ~ , , ~ ~ ~ ~ , ~ ,  Th. van craenenbroeclL, D, van conditions. ‘llicrefore, the working point of the system under 
study must be outside the stability domains of all the 
abnormal oscillation modes. 

Manuscript received October 17, 1995. 

Doininelen, F. Van De Meulebroeke. : 

The authors are grateful to the discusser for his interest in 
the paper. 
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