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Calculation of the 3D Non-linear Eddy Current Field in Moving 
Conductors and its Application to  Braking Systems 
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Abstract- This paper presents a complete FE for- 11. CALCULATION METHOD 
mulation for the calculation of 3D non-linear eddy 
current fields with ferromagnetic moving conduc- A Problem Definztzon 

A, V-A formulation in combination with the Coulomb 

tries tetrahedral elements were employed. The com- 
putation procedure is applied to an eddy current brak- 
ing system of a high velocity train and the resulting 
braking forces are compared to measurements. 

tors. The formulation is realized by using the Fig. 2 shows a simple configuration of three regions 
causing an electromagnetic field problem with eddy cur- 

gauge- T o  consider non-rectangular shapes Of geome- rents due to motion, One region Q1 is moving with a 

region C l ?  

V2. J ,  

I. INTRODUCTION 

The calculation of the 3D eddy current field of moving 
ferromagnetic conductors is necessary for the design of 
eddy current braking systems (see Fig. 1) used in high 
velocity or magnetic levitation trains. For that reason 
a software with a FD approach had been used [l]. But 
the rising demand of a correct modeling of real shapes of 
brakes and rails showed the limitat,ions of that  method. 
This led t,o the following realization of these computations 
by the FE method with tetrahedral elements. 

Most papers concerning this subject use the A', V formu- 
lation for the moving parts, e.g. [2],[3] .  Little attention 
has been given to non-linear 3D calculations and their 
agreement to measurements . 

, rail 

Fig. 1. Longitudinal section view of a pole of an eddy current brake 
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regionn, 

v i ,  eddy currents J,= 0 (E, + v, x BI) 

i periodical bondaiy conditions / 

Fig. 2. Magnetostatic field problem with a moving conductor 

relative velocity to the surrounding regions 0 2  and 0 3 .  

Xssuming the geometry to  be invariant in the direction of 
motion the Maxwell equations for this field problem are: 

In the follon-ing only the regions RI and R2 will be con- 
sidered, because the mathematical formulations for region 
Q2 and !J3 are the same. In region Rz only the magnetic 
part of the electromagnetic field has to  be solved, because 
in a static field the electric field does not depend on the 
magnetic field: 

(7) 

in Rz (8) i (9) 

cur lG = 2 
d i v 6  = 0 
2 = v ( B ) 5  

The interface boundary conditions on rI2 are the conti- 
nuity of the normal component of the flux density 6 and 
the current density J' and of the tangential component of 
the magnetic field intensity i?: 
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(10) 
6. (Z1 -&)  = 0 o n r I 2  (11) 

f i x  (GI -Z2) = 0' 1 (12) 6 . J ;  = 0 

The boundary of R2 is devided into two parts. On rB the 
boundary condition is described by a vanishing normal 
component of the flux density, on r H  by a vanishing tan- 
gential component of the magnetic field intensity: 

6 . S  = 0 o n r g  (13) 
6 x 2  = 0' o n r s  (14) 

The periodical boundary conditions as well on the 
boundary of the moving parts as on the boundary of re- 
gion 0 2  are not considered in the following mathematical 
formulation but are easily to  enforce in the numerical im- 
plement at ion. 

B. Formulation 

In order to  satisfy equation (5) and (8) the magnetic 
vector potential A' is introduced in R1 and 0 2 .  Addi- 
tionally the electrical scalar potential V is used in 01 to 
satisfy (1): 

6 = c u r l i  in 01 and Rz (15) 
E = -gradV i n 0 1  (16) 
4 

This leads to  an  A,V formulation in R1 and an 
A formulation in R ~ :  

curl v curl A' 
- (av 'x  curlA- agradV) = 0' in 01 (17) 

cur lvcur l i  = $ i n 0 2  (18) 

Using these formulations the boundary conditions 
(10)-(14) on rI2, rB and I7H can be written as: 

6 . cu r lA  = 0 on rB (21) 
~x vcurlA' = 6 o n r H  (22) 

Note that taking the divergence of (17) yields 

div (CC x curl A' - a grad V) = 0 in RI (23) 

and consequently implies (2).  Substracting the normal 
component of (17) and (18) on I712  leads to  

6 .  (a5 x curl A'1 - CT grad cl) = 0 on rlz (24) 

in view of the fact that no source current density of 0 2  

is floating into RI and that the other terms vanish by 
boundary condition (19) with the transformation 

C. Uniqueness of the potentials in  the A,V -A'formulation 

Eq. (17) - (22) do not result in an unique solution for 
the potentials satisfying (1)-(14). With (15) only the curl 
of A' is given. To ensure the uniqueness of the potentials 
A' and V, the divergence of Ahas  to be defined as well as 
the normal or tangential component of A' on the boundary. 
A well posed set of conditions is given in [4] with 

divA = 0 in RI and 02 (26) 
21 = A; on r12 (27) 

6 x 2  = 0' onrB  (28) 
6 . A  = 0 o n r H .  (29) 

Now, together with these equation, (17) - (22) represent 
an unique solution for (1) - (14). (26) is known 
as Coulomb gauge, (27) ensures the continuity of A' on 
rI2 and automatically satisfies boundary condition (20), 
(28) defines the tangential component of A' on rB and 
satisfies condition (21) and finally (29) defines the normal 
component of A' without affecting (22). 

This gauging is realized by appending (17) and (18) 
by the term (-gradvdivA) which results in assumption 
of a constant reluctivity in the vector Laplacian operator 
of A' replacing the (curl v curl A) term. Further equation 
(23) now has to  be added, because it does not follow from 
(17) appended by (- grad v div A) : 

Eq. 

curl v curl A' - grad v div A'- 
(crv'x c u r l i -  OgradV) = 6 

div (cd x curl A' - a grad V) = 0 

curl v curl A' - grad v div A' = J', in 0 2  (32) 

But herewith it must be ensured that the term includ- 
ing (vdivii) in (30) and (32) in fact vanishes. Taking the 
divergence of these equations and noting (31) as well as 
the fact that 2 has to be divergence free leads in both 
regions to the Laplacian equation for (v div A): 

AvdivA'=O i n 0 1  and02 (33) 

Taking the normal component of (32) on rH yields the 
homogenous Neumann boundary condition on ( U  div A) 

d - v d i v A = O  o n r H  
d n  

+ 
(34) 

by noting that 6 .  (curl v curl A) vanishes on r H  because of 
(22) with the transformation 

n"(cur1vcurlA) = -div(6 x vcurlA') . ( 3 5 )  

Enforcing homogenous Dirichlet boundary conditions 
along rB 

filz . (curl v1 curl A, - curl v2 curl A,) 
vdivA=O onrB  (36) = div [ 6 l z  x ( v ~  curl - v1 curl Ai)] . (25) 
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and the continuity of (vdiv A) on I'12 

v1 divA1 - v 2 d i v x ~  = 0 on rli ( 3 7 )  

additionally to (33) and (34) yields the vanishing of 
(vdivA') in R I  and Rz. 

Finally an A',V -A' formulation ensuring the uniqueness 
of A' and V for the magnetostatic field problem with mov- 
ing conductors is given as follows: 

curl v curl A' - grad v div A'- 
(aC x curl A' - a grad V) 

div (d x curl A' - U grad V) 

curl v curl A' - grad v div A' - & 
A I  

z12 x (v1 curl 21 - v2 curl A) 
VI div 21 - v2 div A2 

6 1 2  (a5 x curl AI - a grad VI) 

6 x 2  

v div A' 

6 x v c u r l A  

6 . A  

D. Numeracal Implementaon 

The numerical approach of the analytic potentials A' 
and V is based on a FE mesh with first order tetrahedral 
elements. The potential approximation in one element 
can be written as the product of the potential solutions 
on the nodes with the interpolation functions. 

4 12 

4 

i=l  

Applying the Galerkin weighted residual method with the 
shape functions as weighted functions to equation (38) - 
(40) leads to  

f i z  (curl v curl A' - grad v div A 

- ( c + x c u r l ~ - o g r a d V ) )  dR = 0 (51) 

- / v , . a v ( a C x ~ ~ ~ l . j ~ , ~ r i d T ; )  do = 0 (52) 

st . (curl v curl A' - grad v div A' - x )  dR 

J 
RI 

n1 

= 0 (53) J 
0 2  

Using vector identities and integral transformations the 
volume integrals with second derivates of the potential 
functions can be transformed into volume and surface in- 
tegrals with first order derivates, so that  the equations 
(51)- (53) look as follows: 

(54) 

- / N, (05 x curl A, - a grad VI) . 6lZ dl? = 0 (55) 

r12 

a2 

r H  

= a  

Since the shape functions appertaining to the given po- 
tential values of the Dirichlet boundary conditions (45) 
and (48) are not used as weighting functions these func- 
tions satisfy: 

6 x G L  = 0' o n r g  (57) 
7?,Gz = 0 O n r H  (58) 

For that reason the third and sixth surface integral of 
(56) are zero. The other surface integral vanishes by the 
satisfaction of the boundary conditions (42) - (44),(46) 
and (47). 

Finally the transformations of (54) - (56) result in the 
following three equations which, written for all nodes, give 
a linear equation system for the nodal potential values A' 
and V of the FE mesh: 
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- 6% . ai? x curl A+ gt . crgradV dR = 0 (59) 1 
g grad N, . v' x curl A' - 0 grad N, 

a1 

The third term in (59) representing the velocity effects 
forces the matrix to be badly posed and causes oscillations 
of the solution process. To reduce these oscillations and 
to achieve a faster convergence an upwind scheme like 
it is described in [l], [a] and [5] has been carried over to  
tetrahedral elements and is implemented in the third term 
of (59). The resulting matrix from (59) - (61) is solved by 
a BiCG procedure and a stabilized BiCG procedure [6]. 

To consider non-linear materials an underrelaxating it- 
eration procedure is used for the calculation of the per- 
meability p,+1 for the next linear computation step de- 
pendent on the previous one pn and the permeability dis- 
tribution pT,, resulting from the field solution: 

~ n + 1  = QI p r e s  + (1 - QI) ~n (62) 

Compared to  calculations without velocity effects the 
number of non-linear iteration steps is considerably 
higher. To achieve a faster convergence on the one hand 
side combined with a good accuracy on the other side, a is 
reduced exponentially throughout the calculation process: 

&=a," . (63) 

The constant a0 is determined by a series of 2D calcu- 
lations. Starting with pT = 5 and cy0 = 0.6 in the ferro- 
magnetic regions we obtained best results. Depending on 
the material and the velocity 20 to 30 non-linear steps are 
necessary. 

111. APPLICATION A N D  RESULTS 

Linear eddy current braking systems are used in mag- 
netic levitation applications and in high velocity trains in 
order to avoid the abrasion of mechanical disc brakes. 

Fig. 1 shows one pole of the calculated brake usually 
consisting of 6 or 12 poles in a longitudinal section view. 
The pole length is 180 mm and the non-linear character- 
istic of the B-H curve of iron is considered as well in the 
yoke as in the rail. Since the modeling of the whole brake 
would require a large computation expenditure only one 
pole is taken into account. The computed coarse mesh 
consists of about 25000 first order tetrahedral elements 
with 5000 nodes, the finer mesh of about 100000 elements 
with 20000 nodes. 

Fig. 3 shows the absolute value of the computed flux 
density distribution for one pole in a longitudinal section 
view. Measurements on a train and on a test bench com- 
pared to the resulting braking forces calculated by the 
Maxwell-tensor method are displayed in Fig. 4. 
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Fig. 3. Distribution of the absolute value of B' (T) for 100 km/h 
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Fig. 4. Computed braking force compared to measurements 
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