
IEEE Instrumentation and Measurement 
Technology Conference 
Brussels, Belgium, June 4-6, 1996 

Time-Varying Power System Harmonics Using vel& Transform 

Johan Driesen Thieriy Van Craenenbroeck Roland Reekmans Daniel Van Dommelen 
Research Group ESAT/ELEN - Department of Electrical Engineering 

K.U.Leuven - Faculty of Applied Sciences, K. Mercierlaan 94, 5-3001 Heverlee, Belgium 
Phone +32.16.32.10.20 Fax +32.16.32.19.85 

E-Mail: Johan.Driesen@esat. kuleuven.ac. be Thieny.Vancraenenbroeck@esat. kuleuven.ac. be 

Abstract - This paper presents the possibilities of- 
fered by the dyadic-orthonormal wavelet transform 
used in the multiresolution analysis of voltage- and 
current-signals. This transform proves to have 
some advantages over the classical FFT-based al- 
gorithms, when used in electric power quality as- 
sessment and the analysis of waveforms. Practical 
examples using waveforms generated by energy 
saving lighting equipment, remote-control signals 
and an adjustable speed drive, are presented, 

I. INTRODUCTION 

During the last years there is a growing interest in 
the quality of electric power. This can be explained 
partly by the widespread use of nonlinear fast-switching 
electronic equipment in the industrial environment. 
These devices are sensitive to distortions in their sup- 
ply-voltage, but they are also an important contributor 
to the deterioration of the quality, since they often inject 
highly distorted currents in the net. To evaluate these 
phenomena, appropriate measuring techniques have to 
be used [I]. 

An important factor determining this electric power 
quality is the harmonic pollution present in the voltage 
and current waveforms [2]. In the classical measure- 
ment algorithms, the harmonic content of these signals 
is determined by the application of a Fast Fourier 
Transform (FFT), a finite version of the Discrete 
Fourier Transform: 

k=O 

However, the application of this technique will only 
offer correct and accurate results if some implicit as- 
sumptions about the sampled signal are met. Nowa- 
days, it becomes harder to assume that the waveforms 
show this well-described behavior: loads become more 
and more dynamic and thus the generated harmonics 
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become more and more complex and vary faster in 
time. Therefore the need for new methods arises. 

In this paper we present a new mathematical 
method that can be used in cases where an FFT comes 
short, namely the dyadic-orthonormal wavelet trans- 
form, used in the multiresolution analysis (MRA) of 
waveforms. At first, the pitfalls of the FFT are dis- 
cussed, followed by an introduction to wavelet analysis 
and a discussion on the implementation of this tech- 
nique. Finally the use and the advantages of the MRA 
will be demonstrated by three examples in which an 
FFT is not suitable or doesn't reveal all the information. 

II. FFT-BASED ANALYSIS 

A. Conditions 

The Fast Fourier Transform has become a popular 
method to analyse signals containing more than one 
frequency. In electrical power engineering this is 
mostly the fundamental frequency of 50 or 60 Hz plus 
harmonics, having a frequency which is an integer mul- 
tiple of this fundamental frequency. In extreme cases 
subharmonics with lower frequencies are also possible. 
Interharmonics, who lie in between, may occur as they 
are sometimes used for remote-control purposes. 

For practical reasons, the continuous signal has to 
be sampled. From the mathematical derivation of the 
FFT, it follows that the signal is proposed to be infi- 
nitely repeating in the present and in the future. This 
causes three conditions to be met: 
(1) The Nyquist criterion says that the sampling fre- 
quency has to be greater than the double of the highest 
occuring frequency. 
(2) The waveform must be assumed stationary and 
periodic. 
(3) For the correct determination of the real frequen- 
cies, an integer number of the periods of all the com- 
ponents must be included in the window. 
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B. Error-Causing Effects 

If the signal or its set of samples doesn’t meet these 
conditions, inaccuracies can be found in the spectrum 
generated by the FFT. 

The best known effect that can f<alsify the results 
(the spectrum) is probably “aliasing”. This means that 
spectral components with a frequency above the 
Nyquist limit influence the amplitude of frequencies 
below that limit. A higher sampling frequency or a low 
pass filter can minimize this effect. 

Another effect is called “spectral leakage” [31: this 
occurs when the window doesn’t contain an integer 
number of periods. In that case the energy present in a 
certain cornponent will spread out and make the peak 
in the spectrum less sharp and lower; ia mutual interfer- 
ence between the spectral lines is produced. To avoid 
this kind of incorrectness, a phase locked loop control- 
ling the sampling process should be applied and/or a 
weighting vvindow should be used to adlapt the samples. 

If 1 he signal contains components at non-integer 
multiples of the fundamental frequenicy, the so-called 
“picket-fence effect” can be found in the spectrum. 
This can be seen as a special kind of leakage at certain 
frequencies. For instance these frequencies can exist 
in transient phenomena, ferroresonance or time-varying 
harmonics, ... [4]. 

C. Short-Time Fourier Transform 

To solve the errors caused by transient phenomena, 
the Short Time Fourier 1-ransform was developed 
(STFT, sornetimes refered to as the Gabor Transform) 
[5], originallly applied in sound analysis. The main dif- 
ference between this technique and the FFT, is th,at the 
FFT uses large consecutive windows in time to sample 
the signal. The Windowed Discrete Fourier Transform 
(WDFT; the discrete version of the STFT) uses it win- 
dow that translates in time. In this sliiding window the 
transform is calculated at different moments iii time, 
thus creatiing the effect of a set of band-pass filters, 
with every filter having the same widtlh Af, deterrnined 
by the sampling rate and the window itself. The disad- 
vantage of this algorithm is the trade-off that has to be 
made between the length of the window (typically a 
cycle of the fundamental frequency or less; this tleter- 
mines the resolution in time) and the frequency resolu- 
tion A i  in tlhe spectrum. It’s) obvious that when a one- 
cycle window is used, the firequency resolution equals 
the fundamental frequency. In such cases, a llot of 
information1 is lost in the spectrum. 

Now the signals can be represented in two- 
dimensional grids (fig. 1). The divisions on the hoiizon- 
tal axis represent the width in time of each window of 
the WDFT. The divisions on the vertical axis represent 
the band-pass filters with their frequency-extent. For 

each rectangle a value is generated that states the 
amount of signal within that specific frequency interval 
and during that specific time-window. 

F r e q u e n c y  

Figure 1 : Classical time-frequency plane 

However, usually the 41st and the 43rd harmonic in 
the spectrum don’t have to be determined with the 
same accuracy as the 3rd and 5th harmonic. In such 
cases one would rather want a kind of multiresolution 
frequency analysis in which the filter-b%idth Af isn’t a 
constant anymore. Also the following remark can be 
made: a lot of the lowfrequency phenomena have a 
relatively long duration, whereas high-frequency phe- 
nomena last only relatively short. Thus in fact, multiple 
time-scales should be used too. A preferred time- 
frequency diagram could be the one in fig. 2. 

,, ~ F r e  q U e n c )i 

Figure 2: Alternative time-frequency plane 

It’s obvious that Fourier based methods don’t offer 
such multiresolution techniques. As shorn further on, 
wavelet analysis does. 

I I I. WAVELET ANAL.YSIS 

A, Fundamentals 

The Fourier transform decomposes the signal in an 
orthonormal basis containing sin- and cos-functions, 
who are infinitely extending in time. On the other hand, 
the Wavelet Transform, proposed here, decomposes 
the waveform in a basis of signals who are all finite in 
time and in frequency content. These signals are also 
orthonormal and thus the decomposition will be unique. 

The Continuous Wavelet Transform (CWT) corre- 
lates the studied signal with a signal y(t), called a 
“wavelet”, being a real, small and :smooth wave with a 
finite duration in time and a finite frequency content: 
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with y/a,b(t) a function derived from the so-called 
“mother wavelet” y( t ) :  

(3) 

This function is scaled (dilated) by the parameter a, 
thus defining a frequency resolution and translated in 
the time domain by the parameter b. 

In theory the number of possibilities for this mother 
wavelet is infinite. Any function that is finite in time 
and frequency is suitable. Numbers of authors have 
developed their mother wavelet with special properties 
that make it suitable for application in different fields. 
Examples are the Coiflet, the Symmlet, the Morlet, the 
Haar-, the Daubechies- and the Meyer-Wavelet [6]. 

To use this transform with sampled data, the Dis- 
crete Wavelet Transform (DWT) is used: 

(4) 

This is a finite sum because of the finite length of the 
function ~ , , ~ [ k ] ,  that is derived from the mother 

wavelet by the following formula: 

If a, = 2 and bo =aom = 2 m  is chosen, then this 
family of wavelets forms an orthonormal basis in which 
a function can be decomposed in a unique way. Be- 
cause of the choice for the scaling parameter, which is 
a power of t m ,  this decomposition is also called 
“dyadic”. By increasing the parameter m, the length in 
time of the wavelet decreases logarithmically. Also the 
frequency content of this signal increases logarithmi- 
cally. The parameter n translates the function in time. 
Thus the above mentioned special multiresolution 
technique of fig. 2 can be implemented based on these 
wavelets. 

B. Implementation 

The previous discussion suggests the construction 
of a filter bank w’th logarithmic widening filters. This 
can be implemented in an efficient way in a so-called 
pyramidal algorithm. This means that based on the set 
of wavelets and their mathematically closely related set 
of scaling functions 4( t )  consecutive sets of high pass 
filters (HPF) and their complementary lowpass filters 
(LPF) can be derived (fig.3). (These scaling functions 
form the basis for the orthogonal complement of the 

space described by the wavelet basis). This is done by 
an elegant and fast calculation. 

In signal processing, these complementary filters 
are called quadrature mirror filters (QMF). The HPF 
strips off the high-frequent “details” in the signal, 
whereas the LPF produces the remaining coarser sig- 
nal. This last signal has now a diminished bandwidth 
and can thus be downsampled. Then it will pass 
through the next set of QMF to produce details at an- 
other frequency (“scale” or “dyad”). In this way the 
multiresolution analysis (MRA), as it was first described 

is established [6]. by Mallat 

signal - 
scale 5 
scale 4 
scale 3 

=-I%- HPF scale 2 

LP F scale 1 

Figure 3: Pyramidal algorithm with QMF-bank 

C. Choice of the Mother Wavelet 

As mentioned before, there is an enormous degree 
of freedom, namely the choice of the wavelet basis, 
determined by the mother wavelet, in which the de- 
composition takes place. Each of these mother 
wavelets has special properties that makes it suitable 
for a special kind of signals. For instance, the 
Daubechies wavelets are often used in image com- 
pression and, recently, to detect electromagnetic tran- 
sients produced by power system faults or switching [7]. 

In this research we want to use the wavelets to 
analyse time-varying power system harmonics. Thus a 
flat band-pass filter characteristic and a cut-off as sharp 
as possible are required. The Meyer-Wavelet has 
these properties. A part of the filter bank created with 
this Meyer-Wavelet is shown in fig. 4a, while a member 
of the wavelet family is shown in fig. 4b. 

(4) 
Figure 4: (a) Meyer-Wavelet filter bank in the frequency domain; (b) 
Member of the Meyer-Wavelet family in the time domain 
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IV. PRACTICAL EXAMPLES 

A. Example I: Current Drawn by €nergy-Saving Light- 
ing Equipment 

As ai first example the current drawn by a small 
“energy saving” lamp of 20 W is used. In fig. 51a, which 
is a plot of 4096 samples over exactly 10 periods of the 
current (fundamental frequency 01 50 Hz) it can be 
seen that every current peak has a different heiight, and 
thus periodicity is lost. This is explained by the sto- 
chastic character of the ignition in the lamp ciombined 
with a finite resolution in the sampling process. The 
FFT of l.he signal show in consequence a spreading of 
the energy (fig. 5b). 
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Figure 5: (a) Current signal; (b) FFT (example ‘1) 

The MRA is given in fig. 6. The first and second 
scale are not given since no compclnents lying in these 
very small frequency window were present. On scale 
3, the wave modulating the amplitudes show up. The 
signal at the fundamental frequency appears on scales 

4 and 5. This occurence on 1m scales can be ex- 
plained by the non-ideal filter clharacteristics (see also 
fig. 4a): due to the overlap of the filters, signals at cer- 
tain frequencies can be found on more than one scale. 
Most of this 50 Hz signal is situated on the fourth scale; 
on the fifth scale the minor remaining part is mixed with 
a bit of the third harmonic that is dominant on the sixth 
scale. 

-10 1 
-11- ’ , 

0 10 20 30 40 50 160 70 80 90 100 
lime (m5) 

Figure 6: MRA (example 1) 

The attention has to be dravm on the non-constant 
amplitude of the signal at this sixth scale. Usually 
when the term “harmonics” is used, we are inclined to 
think of signals with a constant amplitude, like in the 
Fourier series. With this kind of analysis, a time- 
varying characteristic shows up, which is overseen by 
the classical FFT-based analysis. In this context, the 
term “harmonic order” isn’t, perhaps, the right one to 
use. Maybe a term like “(Meyer-)Wavelet order” is 
better. 

From the seventh scale on, the frequency compo- 
nents, present in the sharp edge of the rising side of the 
current show up. When the scale is higher (plotted 
lower on the figure), the signal becomes more situated 
in time and the frequency window gets broader. On 
these higher scales signals of higher harmonic order 
are taken together on the same scale. That offers the 
possibility to see the lower order signals with a sure 
distinction, more precisely on the lower scales, where 
the frequency window is small, but the time window is 
bigger. In this example it is shown that the signal is 
decomposed in the time-frequency plane of fig. 2. 

C. Example 2: Remote-Control Signals 

The next example shows the simulation of 8192 
samples of a slightly distorted voltage, with superim- 
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posed a few pulses as used by some types of remote- 
control signals (fig. sa). In this example the pulses 
consist of pulsed waves with the same frequency as the 
distorting component (350 Hz). In the FFT (given here 
with a logarithmic scale) the sharp edged fundamental 
is found on the left, but the pulsation at 350 Hz causes 
a strong energy leak that affects the whole spectrum 

-1.5 I .. . 
0 1250 2500 3750 5000 

time (ms) 

(9a) 

-50 ~ i h 

-I --I-_- 
-250 , 

(9b) 
Figure 9: (a) Voltage signal; (b) FFT wth a logarithmic voltage scale (dB) 
(example 2) 

In the MRA (fig. IO),  the fundamental is completely 
situated on the fifth scale. On the eighth scale, the 
distortion plus the control signals are filtered out. On 
the other scales the high frequency components includ- 
ing the sharp edges at the rising and decaying of the 
pulses can be found. With the help of these scales, the 
exact length and occurence in time of the pulses can 
be determined. 
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Figure 10: MRA (example 2) 

D. Example 3: An Adjustable Speed Drive 

The final example shows 4096 samples of the 
measured current drawn in one phase of a fully con- 
trolled three-phase rectifier bridge feeding a DG-motor. 
The bridge is connected to the net by a A-Y- 
transformer. The setup is controlled by a fast currenl- 
and a fast speed-controller. Even in “stationary” condi- 
tions the signal is far from stationary because of the 
high dynamics in the controller. In this part ic~~ar ex- 
ample a small speed change was commanded to the 
speed regulator. This results in a short rise of the cur- 
rent to accelerate the motor, after which the situation 
becomes “stationary” again (fig. 1 la). 
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Figure 11 (a) Current signal, (b)  CFT (example 3) 

The FFT of the signal (fig. 4 ) shows thal, there is a 
dominating fundamental at 50 E, and “harmonics” of 
order 5, 7, 11, 13, ... Since the peaks are far from 
sharp the amplitudes are unreliable. On the other 
hand, the MRA (fig. 12) does show the rise in fun 
mental current at scale 4 and 5. At scale 6 it can 
seen that there is no signal of harmonic order 
(because of the transformer A-binding). At scales 7 
and 8, the relatively smaller rise of t 
rent can be noticed. The small pe 
scales are the c o m ~ ~ ~ ~ a t ~ ~ n ~  within 
hence can clearly e d ~ ~ ~ r m ~ ~ ~ ~ “  In this example, the 
MRA provides more information than 

-2 I 
I 1 

n 

Figure 12: (a) MRA (example 3) 

V. PRACTICAL USE OF THE 

These three examples try to prove that usin 
MRA imore information and usually more relevant one 
than from applying an FFT can be obtained. To per- 

ulations, no more operatio~s had to be 
an FFT. In the mathematical literature, 

even faster algorithms can be found 161. With the re- 
cent evolutions in the field d the DSP-technology, the 
~ ~ p ~ ~ ~ e ~ ~ t a t ~ o n  of a ~ g o ~ ~ t h m ~ ;  performing a mvelet- 
based decomposition, becomes possible. Future appli- 
cations of this method can be: 

Analysing the behavior of devices, appara t~~  
and systems based on simulations or measure- 
ments: the previous examples illustrate the 
ossibilities that can be achieve 
he monitoring of the power quality: it may be 

clear that not only harimonics can be detected, 
but also the moment of their ppearance can be 

lei r transient behavior. 
iena appearing in energy 

is: as in the exam~~e ,  a 
,t the r e ~ ~ ~ e - c o n t ~ o ~  si 

nals in distorted conditions, can be developed. 

e 

A new p o ~ ~ u ~  analysing method, namely the 
veie~-~ased multireso~ut~~n analysis, for current- and 

with time-varying power system har- 
een ~ r o p ~ s e d ,  This r ~ e ~ h o  
in situations where the classical FFT- 

come short or give incorrect 
let has been suggested to be 

used in these situations. The practical implementation 
been discussed. The ad s of this method 

shown in three practical ex 
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