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Abst rac t -  The computa t ion  of t h e  d isp lacements  of ferro- 
magnet ics  as a consequence of magnet ic  fields is a t h e m e  
of present research. In th i s  paper a m e t h o d  of calculation 
is presented  and the resu l t s  are compared  wi th  measure-  
ments .  The effect of a nonl inear  mater ia l  characterist ic 
is examined .  Its influence o n  t h e  force d is t r ibu t ion  will 
be es t imated .  

I. INTRODUCTION 

Within the scope of increasing sensitivity to noise emissions 
one pays more and more attention to magnetically stimulated vi- 
brations and noises. 
Magnetic fields produce surface forces on ferromagnetic material, 
such as laminations. If these forces happen to be variable in 
time, they cause dynamic deformation of the machine’s surface 
and thereby an emission of noise. At present these facts are not 
completely quantifiable in the design of electric devices.[8] 
The main problem lies in a correct model for ferromagnetic mate- 
rials and in the calculation of the local force distribution, because 
an experimental verification of the force is not possible at the pre- 
sent time. 
In this paper tlie displacement resulting from local forces will be 
calculated and compared to measurements. The computing pro- 
cess of the dynamic deformation is arranged in three steps. First, 
one calculates the magnetic field from the geometry, tlie material 
data and the exciting currents. Hence follows the determination of 
the local force distribution and from this the deformations. These 
deformations will be compared with gaugings of a test bench. In 
order to reach a good comparability with the measurements, an 
axisymmetrical layout of the test apparatus is chosen, which can 
be computed as a two-dimensional plane section. 

, 

11. CALCULATIONS 

B. The Force Calculations 

The force calculation represents the coupling between the ma- 
gnetic field and tlie displacements. Assuming the isotropy and 
homogeneity of the ferromagnetic material, tlie flux density can 
be represented as follows 

where the CY; are all parameters that influence the flux density, e.g. 
the permeability and mass density. The magnetic force density 
can now be calculated by the principle of virtual displacement. 
The dilferential energy stored i; the magnetic field is equal to 
the mechanical work oLa force j that extends the field area by a 
virtual displacement b( 

v i /  

For bw we get [2] 

After some steps of transformation according to [2] we find that 
the sum in (6) represents tlie material properties, while the second 
term stands for the energy density caused by the Lorentz force. 

I3nally the force density, caused by material properties only, can 
be written as 

” dw 
da; 

f= E - V a ;  , 

i=l 
( 7 )  

The transition to the Maxwell tensor T results in the following 
relation to the co-energy w’ (21 

A .  The Magnetic Calculations T = Z i T - I w ’ .  (8) 

The computations are based on tile finite element method. IIere I is the unit matrix. Reducing the Maxwell tensor to a 
diITercntia1 surface (Fig.1) one obtains the surface force density 2 Starting with Maxwell’s equations 

(9) 
vxrl=l (1) 2 = lim - / ~ . i i d o .  1 

d,I-O 1 
C 

This leads to an expression for the surface force density 
v.s=o (2) 

and the help of the vector potential A’ the stationary magnetic 

field problem is given by [I] 2= ( B , , ( ~ ~ l , , - ~ f ~ , , ) - ( w ~ - w ~ ) ) ~ ~ ~ .  (10) 

vx (vVxi)=l. (3) It is obvious that the force density 2 is always perpendicular to 

Here v is the reluctivity and j t h e  current density. Magnetization 
resulting from an alteration of tlie material’s mass density during 
a distortion will not be considered. 
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which are coupled by the dillerential matrix t, is of special inte- 
rest 

g=,. - f .  (12) 
The finite element equations for the displacement problem are de- 
rived according to [5] from a variational approach for the energy, 
whicli is called the elastic potential energy in this context. Neg- 
lecting initial tensions and strains and supposing that only surface 
forces Q, act on the magnetic material, one can write the whole 
elastic potential energy IT as 

(1) virtual displacement 

(2) linear characteristic 

(3) nonlinear characteristic 
without volume forces 

(4) nonlinear characteristic 
with volume forces 

If tangential components 
were to appear, they would 
be caused by a violation of 
the boundary condition of 
the magnetic field. 
Till now only the force den- 
sity on surfaces has been 
considered. The internal 
forces are proportional [3] to 
grad p. Nonlinear material 
characteristics lead also to a 
force distribution within the Figure 1: 
material. 
To examine the magnitude of these internal forces the integral 
force is calculated. This integral force will be compared to the 
one calculated by the method based on virtual displacement [4]. 
The example’s geometry is a two-dimensional c-core. The force 
distribution can be seen in Fig.2. 
The surface forces a t  the air gap are obvious. The points within 

the material represent volume forces. Here the element edges have 
been seen as marginal surfaces to which (10) is applied. 

22, B2nr 4 

21, 6 Bin, wi 

marginal surrace 

-1157.1 

-1288.1 

-1300.8 

-1308.5 

F igu re  2: surface force densities 

12.4 

13.1 

calculation 
method 

0.98 

1.58 

11.3 

In Table 1 above, the global force is computed for an electric 
loading, that saturates wide areas of the core. The data in the 
table show that the solution for the core based on the virtual 
displacement calculation is about 12 % below the integral force 
density solution. The influence of the nonlinearity and especially 
the volume forces is about 1 % and therefore negligible. 

C. The Displacement Calculation 

The mechanical problem can be described by IIooke’s material 
1 aw 

- a = H .  (11) 

and some equilibrium and boundary conditions. Here a repres- 
ents the mechanical tension, Ilooke’s matrix and g the strain. 
Furthermore the connection between strain and displacement f, 

IT = gTIfgdV - J f T a d a  ‘I S 

In transition to finite elements the displacement will be described 
by the interpolation matrix & and the nodal displacement d 

- f = f l . i j .  (14) 
Using (13) with (12) and (14) and minimising the potential, one 
gets the following equation for the calculation of the nodal dis- 
placements 

Here 
comprises information about material and geometric 

- k * i j = E .  (15) 
represents the so called element stiffness matrix, which 

- . /  k =  (LJ)T.&.(m)dV. (16) 

and r stands for all loads on the element 

(17) 
S 

Considering IIamilton’s principle [9], the whole stationary linear 
mechanical problem can be solved by the equation 

( & - W * b f ) l & k .  (18) 
Here upper case letters are used to mark globalized matrices. w 
is the mechanical angular frequency, which is twice the electri- 
cal frequency, and bf is the mass matrix. With the help of that 
equation a very interesting aspect of the vibration analysis can be 
examined, that is the eigenvalues or resonant frequencies. 

FEM: 1 1  = 542 EIz analvtical: k = 408 €IZ _ -  

FEM: flon = 6554 IIz no analytical solution 

FEM: l3 = 8644 112 analytical: 13 = 7173 Hz 

Figure  3: Eigenforms of a cantilever beam 
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As an example the eigenvalues and eigenvectors are determined 
for a cantilever beam and compared to results, based on a sim- 
plyfied analytical theory (61. In Fig. 3 the three transverse and 
one longitudinal resonance are shown. 

111. APPARATUS AND TEST BENCH 

The apparatus has been cho- 
sen in such a way that the vi- 
bration generating processes 
are obvious. It consists of an 
air coil and a thin metal sheet 
fixed above it, which can ea- 
sily be activated to vibrate. 
This sort of sheet is normally 
used for laminations in elec- 
trical machines. 
The whole apparatus can be 
seen in Fig.4. The coil is sup- 
plied by an AC-converter, so 
that the frequency of the cur- 
rent can be varied over a wide 

are measured by an accele- 
rometer, the signals of which 
are Fourier transformed and 
finally integrated twice to get 
the displacements. 

ferromagnetic 
fate . 

bandwidth. The vibrations ! 
Figure  4: The apparatus 

IV. RESULTS 

Fig.5 presents the flux lines of the apparatus. Due to the sheet's 
high permeability nearly all of the flux is attracted by the sheet. 
The force density distribution on the sheet's surface can be taken 
from Fig.6. Here the resulting force density is the difference taken 
from the values of the upper and lower sides. The global force on 
the sheet is about 6 N .  
The measurements were made at several sheets of the same mate- 

rial and geometry. These measurements showed a circumferential 
dependency, which can only be explained by the anisotropy of the 

b 

sheets caused by rolling. The displacement oscillates with the cir- 
cumferential angle und has its minimum in the rolling direction. 
For a mechanical frequency of 50 Hz one gets the following angle 
dependency of the displacement for two different sheets (Fig.7). 

This three-dimensional effect overlaps with the axisymmetry of 
the apparatus, so that a comparison of the calculated values can 
only be drawn with an average measurement. Therefore the cal- 
culated resonance frequencies from the second on differ from the 
measured ones considerably. 

Displacements of two sheets are shown in Fig.8. Different sym- 

1 A  B 

- 
4 .  IO3 N/m2 

Figure  6: Force distribution 
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F igu re  7: Anisotropy erects on the displacement 

bok mark several measurements and the dashed line their ave- 
rage. This is compared to the calculations, marked by the solid 
line. The computed displacement lies within the scattering band 
of the measurements and between the averages of the two sheets. 

V. CONCLUSIONS 

The presented procedure provides a numerical method of calcu- 
lating vibrations of ferromagnetic material caused by time-varying 
ina.gnctic fields. Starting from the geometry, material characteri- 
stics and currents displacements are calculated in three steps: 
magnetic field + forces + displacements. 
It has been shown that the magnetic forces within the material 
caused by nonlinear characteristic are very small compared with 
the surface forces. 
The numerical results agree well with measurements made on a 
test bench. Further efforts to analyse three-dimensional effects 
and their influence on resonance frequencies should be made. 
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