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Abstract
Purpose – The goal of this research is to investigate the convergence behavior of the Newton
iteration, when solving the nonlinear problem with consideration of hysteresis effects. Incorporating
the vector hysteresis model in the magnetic vector potential formulation has encountered difficulties.
One of the reasons is that the Newton method is very sensitive regarding the starting point and states
distinct requirements for the nonlinear function in terms of monotony and smoothness. The other
reason is that the differential reluctivity tensor of the material model is discontinuous due to the
properties of the stop operators. In this work, line search methods to overcome these difficulties are
discussed.

Design/methodology/approach – To stabilize the Newton iteration, line search methods are studied.
The first method computes an error-oriented search direction. The second method is based on the Wolfe-
Powell rule using the Armijo condition and curvature condition.

Findings – In this paper, the differentiation of the vector stop model, used to evaluate the Jacobianmatrix, is
studied. Different methods are applied for this nonlinear problem to ensure reliable and stable finite element
simulations with consideration of vector hysteresis effects.

Originality/value – In this paper, two different line search Newton methods are applied to solve the
magnetic field problems with consideration of vector hysteresis effects and ensure a stable
convergence successfully. A comparison of these two methods in terms of robustness and efficiency is
presented.
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1. Introduction
Hysteresis models in a dual representation of the magnetic field are particularly well-
suited models to analyze soft magnetic materials in the magnetic vector potential
formulation, which is used in the finite element (FE) analysis. The vector stop model
belongs to this family of hysteresis models and is accurate in resolving the anisotropy,
the hysteresis losses and the hysteresis saturation properties of ferromagnetic
materials (Matsuo et al., 2004; Leite et al., 2005). Incorporating a hysteretic material
model, such as the vector stop model, into the FE analysis requires an iterative process
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to resolve the nonlinearity. Based on the Taylor series expansion, the magnetic vector
potential is derived by solving the Jacobian matrix and the residual of the equation
system. Starting from the initial guess, the equation system is iteratively solved toward
the real solution by minimizing the residual. In each iteration step, the material model
needs to provide the symmetric and positive definite differential reluctivity tensor for
the Jacobian matrix and the magnetic field strength H(B) for the residual based on the
magnetic flux density B. Deriving the differential reluctivity tensor md tensor is difficult
or even impossible, as the material model may not be continuously differentiable
(Chama et al., 2018). To overcome this problem, an equivalent representation of the
differentiation is implemented and discussed in (Mitsuoka et al. 2013). As the Newton
method is sensitive to the derivative, the insufficient md may lead to divergence (Dlala
et al., 2008). Furthermore, the initial guess point of the Newton iteration should be close
to the solution point; otherwise, the approach may not be stable and fail to converge
(Ahookhosh and Ghaderi, 2017).

The vector hysteresis stop model presented in this work is constructed with stop
operators. Each of the stop operators has two magnetization states according to the input
magnetic flux density and the threshold value of the corresponding operator. Therefore, the
derivative of H(B) is discontinuous, as the operator jumps between the two states. The
Newton method is not suited to solve this problem as previously presented, but Fujiwara
et al. (1993) presented an optimal relaxation method to prevent the Newton steps from
divergence. This optimal relaxation method based on residual monotonicity test is also used
in the previous work (Gu�erin et al., 2017) to deal with the Jiles Atherton’s model. In this
contribution, another relaxation method based on natural monotonicity test (Deuflhard,
2011) is used to stabilize the iterative solving process. The convergence can be achieved
when the natural monotonicity test is fulfilled with the relaxation factor. Besides this
relaxation method, another inexact line search method based on the Wolfe-Powell rule is
implemented. The first condition of Wolfe-Powell rule is the Armijo condition, which is
supposed to ensure a sufficient descent. The second condition named curvature condition,
which ensures a sufficiently large update of the step size. This is very essential, as too small
damped factor restricts the convergent progress.

2. Study of convergence behavior of the Newton method with vector hysteresis
stop model
The nth stop operator Sn of a vector hysteresis stop model based on the construction from
the study of Leite et al. (2005) can be written as:

Sn ¼ Bre
t ¼

Xn if jRtemp;n
�1Xnj < 1

Rtemp; n
Xn

jXnj if jRtemp;n
�1Xnj � 1

8<
: (1)

where Xn ¼ dB þ Sn
t�1, dB = Bt – Bt–1 and Rtemp,n is the threshold diagonal matrix.

Rtemp,n describes the threshold values in x and y directions of the nth stop operator. More
details about the construction of the threshold surface are presented in the previous work
(Xiao et al., 2022). The parameter Bre

t describes the reversible part of the magnetic flux
density of time step t. The formal definition of a stop operator in equation (1) implies that the
system can be divided into an elastic state and a plastic dissipated state. When the input is
restricted in the range thatXn < Rtemp,n, the system possesses only an elastic response and
is equal to the corresponding anhysteretic evolution dB þ Sn

t�1. When the input exceeds
the threshold valueRtemp,n, the state of the system is described by the dissipated dry friction
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element. The stop operator is updated with value of the threshold and the direction of the
historyXn.

To demonstrate the differentiation of the stop model, an alternating excitation from –1.6T
toþ1.6T in 30° is applied to the model. Based on the stop operators, the vector hysteresis stop
model is further constructed with the anhysteretic surfacesHanhys(B) and the weight wn of the
nth operatorSn:

H Bð Þ ¼
XN
n¼1

wnH anhys Snð Þ (2)

A graphical illustration of the interpolated values Hanhys(Snx) in x direction of nth stop
operator with constant threshold values is shown in Figure 1(a). As long as the excitation,
which evaluated as Xn from the time step t, is smaller than the threshold value Rtemp,n, the
Sn keeps updating with the value ofXn. This leads to the left and right curves in Figure 1(a).
Until the input Xn exceeds the threshold value, the Sn suddenly remains at the value of
Rtemp,n. This activation of the operator results in the upper and lower horizontal lines, as
shown in Figure 1(a). The differential reluctivity tensor in equation (3) is calculated by
automatic differentiation of the anhysteretic surfaces. A schematic representation of the
anhysteretic surfaces and differential reluctivity tensor surfaces can be found in Xiao et al.
(2021):

md ¼ @H
@B

¼

@Hx

@Bx

@Hx

@By

@Hy

@Bx

@Hy

@By

2
66664

3
77775 (3)

Once the operator is activated, the md results in a jump, which can be observed in Figure 1(b).
The H(B) is constructed with parallel connections of the stop operators. The differential
reluctivity tensor mdxx of the stop model under one periodic alternating excitation in 30° is
exhibited in Figure 2. In the subfigure of Figure 2(b), the jump from the stop operator can be
observed in the mdxx of the vector hysteresis stopmodel.

The discontinuity in md causes an insufficient Jacobian matrix for the Newton method,
which could lead to the instability or even the divergence of the Newton iteration.

Figure 1.
(a) The x component

of the from
anhysteretic surfaces

interpolated stop
operatorHanhys(Snx)
and (b) the evaluated
differential reluctivity
tensor in x direction

mdxx ¼ @H anhys Snxð Þ
@Bx
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3. Line search methods for field problems with vector hysteresis stop model
Considering the nonlinear magnetic static case, DAk of k

th Newton iteration is solved with
the Jacobian matrix J(Ak) and the residual R(Ak):

J Akð ÞDAk ¼ �R Akð Þ (4)

To save the Newton iteration from instability and extend the range of convergence, line
search methods are introduced. The line search algorithm chooses a direction dk to search
and finds a relaxation factor ak to move along with one searching step, which minimizes the
objective function (Nocedal andWright, 2006). In our case, the object function is the residual
R(Ak). The line search algorithm creates a series of ak and terminates the searching when a
certain condition is satisfied by the kth searching step. The ak is then accepted to update the
solution by:

Akþ1 ¼ Ak þ akDAk; ak 2 0; 1ð � (5)

3.1 Line search with nature monotonicity condition
The condition for the first line search method is chosen as natural monotonicity test, as this
error-oriented framework aims at overcoming the ill-conditioned Jacobian matrix
(Deuflhard, 2011). The natural monotonicity test expects the error DA to fall monotonically
as formulated by:

kDAkþ1k # ukDAkk (6)

where u < 1. Thus, (6) can be rewritten as (9) by using the simplified Newton corrections (7)
and (8) from (Deuflhard, 2011):

kDAkþ1k ¼ kJ Akð Þ�1R Akþ1ð Þk (7)

kDAkk ¼ kJ Akð Þ�1R Akð Þk (8)

kJ Akð Þ�1R Akþ1ð Þ k# ukJ Akð Þ�1R Akð Þk (9)

Figure 2.
(a) Differential
reluctivity tensor
mdxx of the stop
model and (b)
enlarged in the range
of the mdxx, where the
jump occurs
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The u is chosen as 1� ak
2 and the (9) can be formed as:

kJ Akð Þ�1R Ak þ ai
kDAk

� �
k# 1� ai

k

2

� �
kJ Akð Þ�1R Akð Þk (10)

For the ith damped step, if this nature monotonicity test (10) is fulfilled, the damped process
is stopped, and ai

k is set into (5) to calculateAkþ1. For the next Newton iteration, the first line

search step starts with the damped factor a1
kþ1 ¼ min 2ai

k; 1
� �

to accelerate the

convergence. If (10) fails, a is updated further with:

aiþ1
k ¼ ai

k

2
(11)

To illustrate the convergence process of the line search iteration by simulation with
consideration of vector hysteresis effects, the residual of the equation system is calculated in
each line search step. The vector stop model constructed with two stop operators is able to
represent the anisotropic and saturation properties of the magnetic materials.

The development of the object function against the a is shown in Figure 3. To illustrate
the process of line search iteration, the maximum number of damped steps is restricted to 20.
With the monotonicity test (10), the optimal a can be found at the fourth step inside of the
second Newton iteration. With this optimal damped factor a, the norm of the residual
reaches theminimum value.

3.2 Line search with Wolfe-Powell condition
The step size of the line search method sk depends on the direction dk and the damping
factorak, which is formed as:

Figure 3.
The development of
the residual kRkk

against the relaxation
factor a by a second
time step and second

Newton iteration
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sk ¼ akdk (12)

Therefore, to ensure a successful line search iteration, it is essential to choose a proper
direction and a reasonable damping factor.

With the Armijo condition:

R Ak þ akDAkð Þ � R Akð Þ# c1akJ Akð ÞTDAk (13)

of theWolfe Powell rule, a damping factor a [ (0, 1] is accepted, when the step size sk enables
a sufficient descent.

The c1 [ (0, 1) is usually chosen to be small value as 10�4. The right-hand side of equation
(13) is a linear function and has a negative slope c1J(Ak)

TDAkwith respect to ak (Nocedal and
Wright, 2006). This condition determines a maximum step size and ensures a descent from
last iteration step. However, only imposing the Armijo condition is not sufficient, as the
damping factor could be chosen at too small values. The line search progress is therefore
stuck in the range of starting point when ak is close to the left-hand extreme 0. To ensure a
satisfied progress, the curvature condition (14) is added:

J Ak þ akDAkð ÞTDAk � c2J Akð ÞTDAk (14)

where c2 [ (c1, 1). Choosing the direction of Newton method as searching direction, the
typically value of c2 is chosen as 0.9. The left-hand side of equation (14) indicates that the
slope of the next iteration step should be greater than c2 times initial slope of this iteration
step (Nocedal and Wright, 2006). The Armijo condition together with the curvature
condition are referred to asWolfe-Powell condition (Fletcher, 2000).

The strong Wolfe-Powell condition needs the damped factor ak to satisfy the condition
(15) instead of (14):

kJ Ak þ akDAkð ÞTDAkk#kc2J Akð ÞTDAkk (15)

which exclude the points far from the stationary point of R(Ak þ akDAk) (Nocedal and
Wright, 2006).

Applying the strong Wolfe-Powell condition to solve the field problem, the convergence
progress against the damped factor is shown in Figure 4.

3.3 Numerical studies with line search methods
The line search damped Newton methods are further applied to solve the field problems.
Numerical studies based on teamwork problem 32 (Bottauscio et al., 2002) are carried out. The
parameters of the vector stop model are identified with the given magnetic measurements. To
demonstrate the behavior of the convergence in difficult situations, the test case 2 with
harmonic excitation is studied. The relative and absolute tolerances of the Newton iteration are
set at 0.5� 10�3. Calculating with the classic Newton method, the iteration process goes
divergent. To save the process from divergence, both line search methods are applied to solve
the field problem. The convergent progress with respect to the relative and absolute errors of
the both line search methods is illustrated in Figure 5. This figure clearly demonstrates that the
line search with Wolfe Powell rule has a faster convergent process in comparison with the line
search iteration based onmonotonicity test.
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In the study case 2, the simulated results within one period of time is shown in Figure 6. The
simulated magnetic flux density in y direction on C6 with both line search methods is compared
with measurements. In Figure 6(a), the results obtained from both methods are almost identical.
In comparison with measurements, it is clearly seen that the computed field trajectories exhibit a
better agreements in the hysteresis major loop than in the minor loops. This could be observed in
the Figure 6(a) that the minimum and maximum values of flux density is well modeled with the
proposed approach, whereas significant deviations in local extremes are shown. The reason for
the inaccuracy in minor loops could be induced from the insufficient precision by modeling the
minor loops under 0.5T with only two stop operators of the vector stop model. To improve the
accuracy byminor loops, the vector stopmodel should be constructedwithmore stop operators.

Figure 5.
Comparison of the
convergence by the
line search methods

based on
monotonicity test and

Wolfe-Powell
condition at the third

time step by test
case 2

Figure 4.
The development of
the residual kRk11k

against the relaxation
factor a at the first

time step and the first
Newton iteration
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During the simulation, one of the problems is observed from the simulation with
monotonicity test. This method is sensitive to the initial guess of the iteration, and
the relative error could be reduced too fast with the damped factor, which restricts the
convergence process. When zooming in on the time range from 0.09 s to 0.096 s, the
insufficient convergence of the simulation with monotonicity test can be observed in
Figure 6(b). The reason is that the damped factor is reduced to a very small value, which
induces the very fast decreasing of the relative error of the Newton iterations. In the
meanwhile, the absolute error of the Newton iteration still stays on a value far away from
the absolute tolerance. The Newton iteration is thus restricted, and the convergence process
gets stuck. The corresponding relative error and absolute error by the time of 0.0925 s
calculated with the both line search methods are shown in Figure 7.

4. Conclusions and future work
Due to the properties of the stop operators, the jump discontinuity occurs in the differential
reluctivity tensor when the state of the stop operator switched. This discontinuity could lead

Figure 7.
(a) Relative error of
the Newton iteration
and (b) absolute error
of the Newton
iteration

Figure 6.
(a) Comparison of the
measured magnetic
flux density in the y
direction on the pick-
up point C6 within
one period with the
simulated magnetic
flux density by using
monotonicity and
Wolfe-Powell line
search Newton
methods and (b)
zoomed in the range
where the insufficient
convergence occurs
by using the
monotonicity test
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to the divergence of the Newton iteration. In this paper, line search methods are proposed in
combination with an improved differentiation of the vector stop model to ensure a good
convergence. The insufficiency of the method with nature monotonicity condition is pointed
out. A more efficient and robust simulation can be ensured by the line search method with
Wolfe-Powell condition. The presented approach stabilizes the Newton method and presents
a further step into accurate consideration of ferromagnetic hysteresis effects in the magnetic
analysis of e.g. electrical machines. The line search methods with Wolfe-Powell condition
could prevent the Newton iteration with insufficient Jacobian matrix and possible improper
initial guess from divergence.

In computational magnetics, the trust region method is also a popular method to promote
the convergence of nonlinear iteration. This method will be studied in future work. To
achieve a higher accuracy by representing the minor loops, the vector stop model
constructed with more stop operators can be applied to the FE simulation.
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