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Abstract
Purpose – The calculation of electromagnetic fields can involve many degrees of freedom (DOFs) to achieve
accurate results. The DOFs are directly related to the computational effort of the simulation. The effort is
decreased by using the proper generalized decomposition (PGD) and proper orthogonalized decomposition
(POD). The purpose of this study is to combine the advantages of both methods. Therefore, a hybrid
enrichment strategy is proposed and applied to different electromagnetic formulations.
Design/methodology/approach – The POD is an a-priorimethod, which exploits the solution space by
decomposing reference solutions of the field problem. The disadvantage of this method is given by the
unknown number of solutions necessary to reconstruct an accurate field representation. The PGD is an
a-priori approach, which does not rely on reference solutions, but require much more computational effort
than the POD. A hybrid enrichment strategy is proposed, based on building a small POD model and using it
as a starting point of the PGD enrichment process.
Findings – The hybrid enrichment process is able to accurately approximate the reference system with a
smaller computational effort compared to POD and PGD models. The hybrid enrichment process can be
combined with the magneto-dynamic T-X formulation and the magnetic vector potential formulation to solve
eddy current or non-linear problems.
Originality/value – The PGD enrichment process is improved by exploiting a POD. A linear eddy current
problem and a non-linear electrical machine simulation are analyzed in terms of accuracy and computational
effort. Further the PGD-AV formulation is derived and compared to the PGD-T-X reduced order model.

Keywords Model order reduction, Proper generalized decomposition,
Proper orthogonal decomposition, Finite element method, Electrical machine

Paper type Research paper

1. Introduction
Electromagnetic simulations require a large computational effort, if transient effects, non-
linear materials or many different parameter variations are considered in the study. To
reduce the number of degrees of freedom (DOFs), model order reduction techniques, such as
the proper orthogonalized decomposition (POD) or proper generalized decomposition (PGD),
can be used (Chinesta et al., 2013; Henneron and Cl�enet, 2016, 2017; Krimm et al., 2019).
While the first one is an a-priori approach with an optimal orthogonal basis, the latter one is
an a-priori approach without the orthogonality property, even though they are closely
related (Nouy, 2010). The particular aim of this scientific contribution is to analyze and
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clarify whether a combination of both techniques is possible and advantageous. To exploit
the advantages of both methods, a numerical formulation combining POD and PGD is here
presented. As an example of application two test cases are considered. A linear three-
dimensional (3D) eddy current problem is first considered. Then, a two-dimensional (2D)
problem consisting in a small synchronous machine including non-linear material is
examined.

2. Fundamentals
2.1 Finite element formulations
For the numerical analysis with the finite element method (FEM), the electric and magnetic
fields given by the Maxwell’s equations are reformulated by introducing potentials. For
eddy current problems, the AV formulation or the T � X formulation are mainly used
(Hameyer and Belmans, 1999). The AV formulation represents the magnetic field by a
vectorial and the electrical field by both scalar and vector potential. The T� X formulation
uses a combination of scalar and vectorial potentials for the magnetic component and a
vectorial one for the electric component. These and other conceivable potential are studied in
detail in Kuczmann and Iv�anyi (2008).

2.1.1 AV formulation. The magnetic vector potential formulation is based on
equation (1), which express the magnetic flux density B as the curl of vector potentialA and
additionally a scalar potential V is introduced in equation (2) to ensure divergence-free eddy
current regions:

r�A ¼ B; (1)

r � s
@A
@t

�rV

� �� �
¼ 0 : (2)

In a 2D analysis, the electrical scalar potential is not considered. Using the material
constitutive laws into Ampère’s and Faraday’s law, the strong form of the system can be
determined. Consecutively, the weak form of this differential equation is derived by using
Galerkin’s method to achieve a solvable form in the discretized domain D (Hameyer and
Belmans, 1999; Kuczmann and Iv�anyi, 2008). Assuming Dirichlet conditions on the
boundary of the domain with a fixed potential of zero results in:

ð
D

� r� wð Þ � r � Að Þ þ w � s@A
@t

þ s � rV

� �
dD ¼

ð
D
w � J sdD; (3)

ð
D
srw � @A

@t
þrV

� �
dD ¼ 0 ; (4)

Where s is the electric conductivity and v = 1/m is the magnetic reluctivity. Hereby, w
denotes the element test function and JS is the source current density. The test functions for
equation (3) are edge elements, whereas those in equation (4) are nodal elements.

2.1.2 T � X formulation. In contrast to the AV formulation, in the T � X formulation a
vector electric potential and a scalar potential for the representation of the magnetic field are
used. The magnetic field is expressed by:
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H ¼ T �r X; (5)

where the electric vector potential T is given by the sum of the exciting vector potential TS

and the eddy current componentTe, which is only defined in the conductive regions:

T ¼ TS þ T e ; (6)

r� TS ¼ J S; (7)

r� T e ¼ J e: (8)

The source electric vector potential has to be determined before solving the field problem.
To achieve TS, a tree-cotree technique is used (Boehmer et al., 2013), which makes it possible
to represent the source current density JS. These potentials are substituted into Faraday’s
and Gauß’ laws and combined with material laws. Again, the weak form is derived by
Galerkin’s method as:

ð
D

1
s

r� wð Þ � r � T eð Þ þ w � @mT e � w � @mr X
@t

dD ¼ �
ð
D

w � @mTS

@t
dD (9)

ð
D

�mrw � T e þ mrw � r X dD ¼
ð
D

mrw � T S dD (10)

Similar to the test functions in equation (3), the test functions in equation (9) are taken from
the edge element space for 3D analysis. The test functions of equation (10) are taken from
the nodal element space such as those for discretizing equation (4).

In general and independently from the T � X formulation, the system of interest can be
rewritten as a differential algebraic equation (DAE) in the form of:

MX tð Þ þK
dX tð Þ
dt

¼ F tð Þ ; (11)

WhereM denotes the mass matrix, K is the stiffness matrix and F(t) is the load vector. The
unknown vectorX(t) belongs toRn, where n is the number of DOFs.

2.2 Model order reduction techniques
The following model order reduction techniques are based on the separation of variables
into sums over function products, which only depend on a single parameter each (Nouy,
2010). For an arbitrary potentialU(x, t), the separation is given by:

U x; tð Þ �
Xm
i¼1

Ri;U xð ÞSi;U tð Þ (12)

The variables here are the space x and the time t. The subscriptU denotes to which potential
the functionR and S belong. Other parameters such as the excitation in electrical machines,
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given by permanent magnet remanence or current angle and amplitude in the dq-frame can
be introduced into the decomposition as well, which enables the fast study of the machine
behavior by model order reduction techniques (Müller et al., 2020a, 2020b, 2021, 2022).

2.2.1 Proper orthogonal decomposition. The POD as an a-posteriorimethod relies on the
knowledge of the solution subspace of the reference system. The fundamental principle of
the POD is based on the projection of the reference problem into a subspace, which is
deduced from solutions of the reference system. These solutions are computed beforehand
and are called snapshots, here denoted by X. The snapshots are decomposed into a set of
orthogonal vectors, which are consecutively used to create a projection operator (Chinesta
et al., 2011; Cl�enet et al., 2015; Montier et al., 2017). To obtain this operator, first some
snapshots are collected into:

AS ¼ X1; . . . ;XNoS½ � (13)

Then the operator W, which maps the reference system into a subspace, spanned by the
orthogonal basis vectors, is achieved for, e.g. by taking the left singular vectors of the
snapshot matrix.

Due to the fact that the projection operator is built by the snapshot method, it is crucial to
enrich the most important information of the solution subspace of the system into the
snapshots to ensure a good approximation (Müller et al., 2020a, 2020b, 2021, 2022). This
underlines the advantage and disadvantage of this method: the effort of a single snapshot
computation is acceptable, but it is not known a-priori which and how many snapshots are
required for an accurate reduced model. In Mukherjee et al. (2017), a greedy algorithm is
combined with the POD to alleviate this problem. Particularly for transient problems, this
can lead to a large additional computational effort. Another way to enrich information into
the reduced basis without the need of a singular value decomposition is given by (Kasolis
and Clemens, 2020). It is based on statistics and evaluates the information entropy of the
snapshots. Particularly, for large models this approach reduces the effort associated with the
computation of singular vectors. The POD constructs a Reduced Order Model (ROM) of
order m\lln by the projection of equation (11) into a reduced subspace spanned by the
snapshots:

WtMWX r tð Þ þWtKW
dX r tð Þ

dt
¼ WtF tð Þ : (14)

The full solution vector is then given by the multiplication of projection operator with the
reduced solutionX =WXr. This method is independent of the type of potentials used for the
discretization and it is non-intrusive because the PDE is left unchanged. Different methods
exist to construct the projection, on one hand one projection operator for the whole solution
vector can be created or a separate operator for each potential (Montier et al., 2017). In this
contribution only one projection operator for the whole system is used.

If non-linearities have to be considered a similar approach, i.e. the Discrete Empirical
Interpolation Method (DEIM), can be used together with the POD and PGD (Chaturantabut
and Sorensen, 2010; Henneron and Cl�enet, 2016, 2017, Müller et al., 2020a, 2020b, 2021, 2022).
It collects the non-linearity in a second snapshot matrix, which is analogously decomposed
as in the POD. By applying a greedy algorithm (Chaturantabut and Sorensen, 2010), a subset
of elements can be determined on which the non-linearity has to be evaluated. Afterward the
projection operator of the DEIM is used to interpolate the non-linearity of these subset of
elements into the domains with non-linear media.
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2.2.2 Proper generalized decomposition. The PGD is an a-priori approach and is based on
a direct decomposition of the unknown potential U into a sum of functional products. In
contrast to the POD, the PGD only requires to build an operator given by the weak forms of
the partial differential equations and hence it does not require the knowledge of the solution
space by decomposing previously computed solutions. The terms of the sum are in the
following also referred to as modes (Nouy, 2010; Chinesta et al., 2011; Chinesta et al., 2013). In
the following, the transient problem is used to explain the enrichment strategy of the PGD.
Test functions are separated as potentials in equation (12), that is:

wU ¼ R*
m;U xð ÞSm;U tð Þ þRm;U xð ÞS*

m;U tð Þ : (15)

To identify a couple of these functions for a particular mode m, an Alternative Direction
Scheme (ADS) is used (Nouy, 2010), also called power iteration. By assuming the modes up to
m � 1 are known, the ADS starts with the initialization of the function Sm,U = Sm�1,U. Ifm is
equal to one, Sm is initialized with the temporal evolution of the exciting current. Consecutively,
one of the unknown functions is taken as fixed and the other function is computed. The modes
R related to the space are collected in BR, which represent the space basis and the time modes
S are collected in the time basisBS. The whole enrichment process is denoted in Algorithm 1.

Algorithm 1: PGD enrichment process.
1: m =1, BR = [], BS = []
2: While m# mmax and error> [
3: Initialise S(t), k = 1
4: While k< kmax and rel.change> [rel
5: Compute Rm = g(S)
6: Compute Sm = h(R)
7: Compute relative change of Rm and Sm
8: End while
9: Add Rm! BR and Sm! BS

10: Um x; tð Þ ¼ Um�1 x; tð Þ þ Rm xð ÞSm tð Þ
11: Compute error
12: End while

Hereby, the error used in Step 2 can be chosen as whether the absolute residual or other
criteria, such as the error of the eddy current losses (Müller et al., 2020a, 2020b, 2021, 2022). If
two potentials exist, such as in the AV formulation or T � X formulation, the operators g(S)
and h(R) compute two space modesRm and time modes Sm. BR and BS contain the computed
space and time modes,mmax denotes the maximum number of modes and kmax the maximum
number of iterations of the ADS. The power iteration is given by lines four to nine in
Algorithm 1. This process enables to enrich eigenfunctions of the problem with high
information content (Nouy, 2010). To avoid ambiguity, it is important to normalize all
functions except for one. In this example the time function S is normalized, but normalization
of the spatial part works equivalently. The function’s operators g(S) and h(R), built by the
PGD, arise from the system of equations given by the differential equations to be solved.
Therefore, the PGD is an intrusive approach, contrary to the POD. After the enrichment
process, commonly denoted as offline-phase, is converged, the field quantities and the post
processing can be quickly evaluated. This second phase is named “online-phase”.

2.2.2.1 Proper generalized decomposition-AV formulation. To achieve the operators for
the AV formulation, the separation approach [equation (12)] is introduced to both potentials
and the related test functions in the nodal and edge element space [equation (15)].
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Xm
i¼1

ð
T

Sm;ASi;Adt
ð
D

� r� R*
m;A

� �
� r � Ri;A
� �

dDþ
Xm
i¼1

ð
T

Sm;A
dSi;A
dt

dt
ð
D

sR*
m;A � Ri;AdD

þ
Xm
i¼1

ð
T

Sm;ASi;Vdt
ð
D

sR*
m;A � rRi;VdD�

ð
T

Sm;AJS;Tdt
ð
D

R*
m;AJS;xdD ¼ 0

(16)

Xm
i¼1

ð
T

Sm;V
dSi;A
dt

dt
ð
D

srR*
m;V � Ri;AdDþ

ð
T

Sm;VSi;Vdt
ð
D

srR*
m;V � rRi;VdD ¼ 0 (17)

Sorting the integrals regarding the time and space domain results in the following operator
g(S) given by equations (16) and (17). g(S) states a system of equations resulting from the
coupled differential equations (3) and (4) to compute the space function Rm and is solved by
the FEM.

Xm
i¼1

ð
T

S*
m;ASi;Adt

ð
D

� r� Rm;A
� � � r � Ri;A

� �
dDþ

Xm
i¼1

ð
T

S*
m;A

dSi;A
dt

dt
ð
D

sRm;A � Ri;AdD

þ
Xm
i¼1

ð
T

S*
m;ASi;Vdt

ð
D

sRm;A � rRi;VdD�
ð
T

S*
m;AJS;Tdt

ð
D

Rm;A � JS;xdD ¼ 0

(18)

Xm
i¼1

ð
T

S*
m;V

dSi;A
dt

dt
ð
D

srRm;V � Ri;AdDþ
ð
T

S*
m;VSi;Vdt

ð
D

srRm;V � rRi;VdD ¼ 0 (19)

After the spatial mode Rm is calculated, the operator h(R) for the computation of the time
modes is given by equations (18) and (19). The operator consists of two coupled ordinary
differential equations (ODE). The integrals over the domain D are computed on the mesh
and result in scalar coefficients for the ODE. Equations (18) and (19) can for example be
solved by a one-dimensional FEM or by reformulation into a strong form (Müller et al.,
2020a, 2020b, 2021, 2022).

2.2.2.2 Proper generalized decomposition-T 2 X formulation. Analogously to the PGD-
AV formulation, the operators of the PGD in combination with the magneto dynamic scalar
potential formulation are deduced. The spatial operator g(S) is defined as the system of
equations given by equations (20) and (21):

Xm
i¼1

ð
T

Sm;TeSi;Tedt
ð
D

1
s

r� Ri;Te

� � � r � R*
m;Te

� �
dDþ

ð
T

Sm;Te

dSi;Te

dt
dt

ð
D

mRi;Te � R*
m;Te

dD

�
Xm
i¼1

ð
T

Sm;Te

dSi; X
dt

dt
ð
D

mrRi; X � R*
m;Te

dDþ
ð
T

Sm;Te

dTS;T

dt
dt

ð
D

mTS;x � R*
m;Te

dD ¼ 0
(20)
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Xm
i¼1

ð
T

Sm; XSi;Tedt
ð
D

� mRi;Te � rR*
m; XdDþ

ð
T

Sm; XSi; Xdt
ð
D

mrRi; X � rR*
m; XdD

�
ð
T

Sm; XTS;Tdt
ð
D

mTS;x � rR*
m; XdD ¼ 0

(21)

And the operator h(R) for the time functions is defined as the system of equations given by
equations (22) and (23):

Xm
i¼1

ð
T

S*
m;Te

Si;Tedt
ð
D

1
s

r� Ri;Te

� � � r � Rm;Te

� �
dDþ

ð
T

S*
m;Te

dSi;Te

dt
dt

ð
D

mRi;Te � Rm;Te
dD

�
Xm
i¼1

ð
T

S*
m;Te

dSi; X
dt

dt
ð
D

mrRi; X � Rm;Te
dDþ

ð
T

S*
m;Te

dTS;T

dt
dt

ð
D

mTS;x � Rm;Te
dD ¼ 0 ;

(22)

Xm
i¼1

ð
T

S*
m; XSi;Tedt

ð
D

� mRi;Te � rRm; XdDþ
ð
T

S*
m; XSi; Xdt

ð
D

mrRi; X � rRm; XdD

�
ð
T

S*
m; XTS;Tdt

ð
D

mTS;x � rRm; XdD ¼ 0 :

(23)

3. Hybrid enrichment strategy
In Nouy (2010), it is noted that the PGD is an a-priori and generalized version of the POD.
Further, it is explained that the columns of the POD projection operator W are the space
modes of the decomposition. The hybrid enrichment strategy consists of a two-stage
process: The reference system is solved for a distinct number of steps and subsequently
the solutions are decomposed to achieve the operator W 2 RDOF�NoS. Then f columns are
handed over to the PGD to serve as a startup solution of the first f space modes and assumed
to be fixed. Therefore, only the operator h(R) has to be computed. After m becomes large
than f, the standard PGD enrichment process continues by computing both operators g(S)
and h(R). The complete process is given in Algorithm 2.

Algorithm 2: Hybrid enrichment process.
1: ConstructW from snapshots and initialize m =1,

BR =W[:,1:f], BS = []
2: While m# mmax and error> [
3: Initialise S(t), k = 1
4: While k< kmax and rel.change> [rel
5: If m#f : Rm = column m ofW
6: Else: Compute Rm = g(S)
7: End If
8: Compute Sm = h(R)
9: Compute relative change of Rm and Sm
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10: End while
11: Add Rm! BR and Sm! BS
12: Um x; tð Þ ¼ Um�1 x; tð Þ þ Rm xð ÞSm tð Þ
13: Compute error
14: End while

Although the hybrid enrichment process is not an a-priori approach, interfering with the
generalization approach of the PGD of lifting the requirement for previously computed
solutions, it has certain advantages. First, the columns ofW span an orthogonal system and,
second, the number of finite element computations related to solving large systems of
equations can be decreased.

4. Application
4.1 Three dimensional linear eddy current problems
The first application example consists of a conducting sample placed in a short coil, shown
in Figure 1. The conductivity is set to 40 MS/m and the frequency is 50Hz. The excitation is
given by a sinusoidal signal with a current amplitude of 1,000A. The studied time interval
spans two full periods and is sampled with 150 steps per period. The problem is computed
with the POD, PGD and hybrid approach for both formulations to analyze the reduction,
accuracy and feasibility of the approaches. The reference solutions used in the following
sections are obtained by 3D transient finite element simulations with the AV formulation
and T � X formulation. The utilized elements are of first order. The relative error of the
Joule losses is calculated between the reference 3D simulation and those using model
reduction techniques.

4.1.1 T � X formulation. In Figure 2, the results for the simulation with the T � X
formulation are given in terms of Joule losses versus time. As snapshots for the POD, the
solutions for the first few consecutive time steps are taken. For the first comparison the hybrid
approach here uses the first two snapshots of the POD basis. A comparison of the influence of
the number of snapshots used in the hybrid approach is subsequently presented. As described
in Müller et al. (2020a, 2020b, 2021, 2022), the POD reduced order model [Figure 2(a)] does not
approximate the reference losses well, due to the slowly increasing information content of the
snapshots in transient problems. The PGD in Figure 2(b) shows a better approximation of the
reference losses by using 6 modes. The hybrid approach in Figure 2(c) starts with two space
modes extracted fromW, built by the first six consecutive snapshots. It shows that the hybrid
enrichment process produces less accurate losses over time compared to the pure PGD, but the

Figure 1.
Geometry of the
transient eddy
current problem
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results are closer to the reference than for the POD approach. In Figure 2(d), the relative error
is depicted: The hybrid approach convergence is located in between the POD and PGD
method and the PGDmore accurate than the POD.

In Figure 3, the relative error of the number of columns of W, used in the hybrid
approach, on the convergence is pictured. For both studies, the same snapshots are taken for
the construction of W and the number of columns is varied. The results highlight the
decreasing information value of the singular vectors contained in W, which reflects in
the hybrid approaches convergence behavior. Taking more columns into account worsens
the convergence and thus the accuracy of the fifth mode is worse than the POD
approximation. The results highlight the decreasing information value of the singular
vectors contained in W, which reflects in the hybrid approaches convergence behavior.
Taking more columns into account worsens the convergence and thus the accuracy of the
fifth mode is worse than the POD approximation. The enrichment process computes modes,
which minimize the error over the whole time interval, while the POD basis vectors
minimize the error in the subspace spanned by the snapshots. Taking sequential snapshots
only represents a small part of the time interval. The operator h(R) given by equations (22),
(23) tries then to minimize the error over the whole time interval with space modes taken

Figure 2.
Joule losses for the
transient problem
simulated with the
T�X formulation
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from the subspace spanned by the POD basis, which results for a worsened convergence if
more POD snapshots are used. After the fifth mode m is bigger than the number of used
POD basis vectors and therefore, the next space mode is computed from the operator g(S)
given by equations (20), (21). This space mode improves, especially the approximation of the
time interval, which is not included in the POD snapshots. This indicates that required
number of modes in the hybrid approach to accurately approximate the system is influenced
by the decreasing information content of the snapshots.

4.1.2 AV formulation. For the case study, using the AV formulation, a similar behavior
of the Joule losses versus time can be observed for the POD [Figure 4(a)] and PGD
[Figure 4(b)] compared to the T � X formulation. The POD converges slower toward the
reference losses than the PGD, but the PGD in combination with the magnetic vector and
electric scalar potential requires more modes than the PGD using an electric vector potential
and a scalar magnetic potential. Comparing Figure 2(d) and Figure 4(d) reveals that the
ROM with the T � X potentials converge smoother toward the reference solutions than the
ROMs using the AV potentials, particularly for the POD. Again, the PGD shows a more
accurate approximation of the system compared to the POD. Further, it has to be mentioned
that the hybrid approach in combination with AV potentials diverges. To receive a
converging model, Algorithm 2 has to be adapted to initialize Rm with the corresponding
column ofW and consecutively solve both operators g(S) and h(R) instead of only h(R) for all
modes and not only m > f, which contradicts the original idea of the hybrid approach. This
adaption results in a process, which is very similar to the standard PGD enrichment given in
Algorithm 1 with an initialization of the space mode Rm instead of Sm. Further, it is
necessary to exchange the computation of g(S) and h(R). This results in the very similar
results of the losses for the PGD and the hybrid model. The results of this section show that
the POD and PGD can be combined with the AV formulation, but the hybrid enrichment
procedure is unstable with the AV formulation. Applying the described adaption led to a
converging model, which conflicts with the basic idea of the hybrid approach of not
calculating g(S) form# f.

Figure 3.
Relative error of the
Joule losses of the
hybrid approach for
different number of
snapshots
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4.2 Non-linear simulation of an electrical machine with a locked rotor
A non-linear electrical machine is now analyzed with the PGD, POD and hybrid approach in
combination with the magnetic vector potential formulation in two dimensions (Müller et al.,
2020a, 2020b, 2021, 2022). This analysis is conducted on a surface permanent magnet
synchronous machine shown in Figure 5. The magnet remanence is set to 1.2T and the
excitation current holds an amplitude of 5A. The rotor is locked in position and the electric
angle is divided into 73 steps for one electrical period. The flux guiding material in the stator
and rotor holds a non-linear characteristic to include saturation effects into the simulation.
The non-linearity is usually numerically resolved by a Newton or fixed-point method
(Hameyer and Belmans, 1999; Dlala et al., 2008). Both methods can be applied to both the
reference computation as well as the POD method. In this non-linear example the snapshots
for the POD are equally distributed over the time interval. In contrast to that, the PGD is
combined with the fixed-point method due to its separational approach. To be able to reduce
the computational effort related to the evaluation of the non-linearity the DEIM is used in
the POD and PGD. In the following, the reference and the POD solutions are obtained by the
Newton method. The hybrid approach highly benefits from this possibility to evaluate
reference solutions fast and the overall computational effort can be reduced.

Figure 4.
Joule losses for the
transient problem
simulated with the

AV formulation
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In Figure 6, the simulation results are given. The torque is well approximated for all
methods. Contrary to the previous problem, the convergence of the POD is faster than the
convergence of the PGD. The POD projection operator constructed from three equivalently
distributed snapshots is used in the hybrid process. The error of the hybrid approach is
greater for the first two modes than those of the PGD and POD. The convergence for modes
three to five shows similarities with the standard PGD, but with a lower absolute error. In
the two-dimensional simulation, the hybrid enrichment process improved the PGD both in
terms of computational effort as well as accuracy.

4.3 Evaluation of computational effort
The computational effort of the reference simulation, the PGD, POD and hybrid approach is
compared in the following section. As a measure, the number of solvings of linear systems of
equations is proposed to exclude the computational time of a specific processing unit. The
comparison given in Figure 7 contains the evaluation for the linear transient problem using
the T � X formulation and the non-linear simulation of the synchronous machine. The
transient problem in combination with the AV formulation is excluded due to the occurring
stability issues. The different methods conduct different types of computations, each

Figure 5.
Second case study –
synchronous machine
with surface mounted
permanent magnets

Figure 6.
Non-linear locked
rotor simulation
results for the
synchronous machine
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holding a different amount of effort. To distinguish between these efforts, three bars (FEM,
Red. FEM, Scal.) are assigned to each simulation type with the frequency of the respective
efforts. In Figure 7(a), the “FEM” bar is obtained for the Ref and POD simulation from
constructing and solving the system of equations (9) and (10). For the PGD and hybrid
approach, it is achieved by setting up and solving the system of equations (20) and (21). The
bar associated with “Scal.” is connected to the effort of solving equations (22) and (23). In
Figure 7, the standard FEM shows the largest computational effort. It is followed in terms of
effort by a reduced computation, which is conducted by the POD in the reduced system or
by applying the DEIM in the PGD. These computations are abbreviated by “Red. FEM” in
the figures because the applied projection operators reduce the effort connected to building
and solving the system of equations. The solving equations (22) and (23), denoted by “Scal.”,
to get the time functions in the PGD and hybrid approach holds the smallest computational
burden. The effort of the linear problem given in Figure 7(a) and of the non-linear problem
given in Figure 7(b) highlights the reduction of computational effort of the hybrid approach
compared to the other methods. The factor of reduction compared to the reference
computation of the linear problem is 8.57, respectively 2.1 for the non-linear problem.
Additionally, the ratio of reduction compared to the standard PGD is 1.48 for the linear and
2.19 for the non-linear problem. Particularly for the non-linear problem, this reduction is
interesting, because it decreases the number of solvings to be smaller than for the reference
computation. For the transient problem one solving of scalar equations per used column of
W is conducted, but the non-linear problem needs to iteratively solve the scalar equations
due to the ferromagnetic material characteristic.

5. Conclusion
A hybrid enrichment strategy is proposed to combine the advantages of the POD and
PGD method for the computation of electromagnetic fields. The computation of different
problem classes shows the reduction of computational effort of the PGD. Although the
a-priori property of the PGD is lost, the computational reduction linear and non-linear
problems can cope with this disadvantage of computing a small number of reference
solutions. The achieved reduction factor in terms of effort compared to the standard FEM
is 8.57 for the linear problem and 2.1 for the non-linear problem. Additionally to the

Figure 7.
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hybrid enrichment strategy, the PGD in combination with the AV formulation is derived.
The results highlight that the separation approach of the PGD can be introduced in
different formulations and the reduced model achieves accurate results. However, the
hybrid approach for the PGD with the AV formulation shows unstable behavior and
requires further research.
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