
Energy Conversion and Management 251 (2022) 115030

Available online 24 November 2021
0196-8904/© 2021 Elsevier Ltd. All rights reserved.

Deep reinforcement learning based energy management strategy of fuel cell 
hybrid railway vehicles considering fuel cell aging 

Kai Deng a,*, Yingxu Liu b, Di Hai a, Hujun Peng a, Lars Löwenstein c, Stefan Pischinger b, 
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A B S T R A C T   

In the rail transportation industry, growing energy and environmental awareness requires the use of alternatives 
to combustion engines. These include hybrid electrically driven railway vehicles powered by fuel cells and 
batteries. The cost of hydrogen consumption and the lifetime of fuel cells are currently the main challenges that 
need to be addressed before widespread deployment of fuel cell railway vehicles can be realized. With this in 
mind, this work focuses on the energy management system with emphasis on optimizing the energy distribution 
to reduce the overall operational cost. The presented energy management strategy (EMS) aims at minimizing 
hydrogen consumption and fuel cell aging costs while achieving a favorable balance between battery charging 
and discharging. In order to take fuel cell aging into account in energy management and mitigate fuel cell aging 
trough power distribution, an online fuel cell aging estimation model based on four operation modes is intro
duced and applied. Moreover, the advanced deep reinforcement learning method Twin Delayed Deep Deter
ministic Policy Gradient (TD3) is used to obtain a promising EMS. To improve the adaptability of the strategy, a 
stochastic training environment, which is based on real measured speed profiles considering passenger numbers 
is used for training. Assuming different environmental and passenger transport volumes, the results confirm that 
the proposed TD3-EMS achieves battery charge-sustaining at low hydrogen consumption while slowing down 
fuel cell degradation.   

1. Introduction 

1.1. Background 

In order to meet the world’s massive energy needs while reducing 
greenhouse gas (GHG) and pollutant emissions, the search for efficient 
and clean energy sources and propulsion systems for vehicles is being 
pursued with increasing intensity worldwide. In this context, electric 
drives powered by fuel cells are considered a promising alternative to 
combustion engines using conventional fossil fuels, as they have higher 
efficiency and do not produce any harmful emissions. Fuel cells also 
have good market prospects, especially in the rail transport sector, 
where there is a high demand for environmentally friendly drives. Many 

governments have introduced specific targets and policies to promote 
the development of clean energy sources such as hydrogen. According to 
a corresponding roadmap, China will have more than 50,000 fuel cell 
vehicles and 300 hydrogen refueling stations in operation by 2025, and 
more than 1 million fuel cell vehicles, and 1000 hydrogen refueling 
stations will be in service by 2030 [1]. In the United States, hydrogen 
demand for various applications is expected to exceed 17 million tons by 
the end of 2030, with sales of 1.2 million fuel cell vehicles and 4,300 
fueling stations in operation nationwide [2]. 

1.2. Literature review 

One of the core issues in the development of fuel cell hybrid vehicles 
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(FCHEVs) is energy management. The goal of a superior energy man
agement strategy (EMS) is to find the optimal distribution of the load 
power to achieve favorable overall performance in terms of fuel con
sumption and other related aspects, such as battery charge-sustaining, 
extended service life of the fuel cell, etc. For hybrid vehicles (HEVs) 
powered by multiple energy sources, different energy management 
strategies have been proposed and studied in the literature. They can be 
divided into two main categories, namely rule-based and optimization- 
based strategies [3]. 

The rule-based strategies are based on predetermined heuristic or 
empirical rules, which are widely used in practice due to their robust
ness and low computational cost. The early studies for the rule-based 
strategies follow the state machine method to determine the vehicle 
operation modes, and then rely on the expert knowledge to define the 
control logic aimed at improving the fuel economy [4]. Although the 
rule-based strategy can achieve good fuel economy, it does not guar
antee achievement of the global optimum. To address the above prob
lems, some parameter settings in rule-based strategies can be improved 
by optimization techniques [5]. However, the obtained strategies suffer 
from a lack of adaptability and the results may vary significantly in 
different driving environments. 

Compared to the rule-based strategies, optimization-based strategies 
deal with the energy management as an optimization problem. They are 
typically divided into two types: offline- and online optimization-based 
strategies. In offline optimization-based strategies, the problem is 
considered for the whole driving cycle. Among them, Dynamic Pro
gramming (DP) can ensure the global optimum and is often used as a 
basis to evaluate the results of other strategies. Despite its ability to 
achieve optimal results, DP relies on a fixed driving cycle and its 
computational complexity limits its application. To realize the online 
implementation, in [6,7] DP is applied to determine the optimal results 
and the control characteristics are summarized to the control rules 
available online. Another offline optimization-based strategy is the 
Pontryagin minimum principle (PMP). It is applied to the dynamic 
system by converting it into a local optimization problem and searching 
for the instantaneous minimum of the Hamiltonian function. Studies in 
[8,9] have proved that the PMP strategy can obtain a near optimal so
lution with the prior knowledge of the driving cycle. Despite the low 
computational cost, the PMP method relies on the global driving infor
mation and the optimum is usually found by the offline shooting 
method. With the goal of providing real-time control, adaptive PMPs 
have been proposed in [10,11]. In these works, the adaptive estimation 
of the costate is achieved by the prediction method, and therefore they 
can be considered as the online optimization based method. Another 
typical online optimization based method is the model predictive con
trol (MPC), which provides suboptimal control without global infor
mation as a prerequisite. For accurate prediction, an MPC-based EMS for 
HEVs with adaptive Markov chain prediction is presented in [12]. It 
shows robustness to variation in driving conditions and excellent fuel 
economy performance. In [13], an online adaptation mechanism of the 
PMP-derived cost function is introduced into the MPC structure, which 
shows promising fuel economy and battery charge-sustaining. However, 
the prediction accuracy and the computational cost are the limitations 
for the MPC-based strategies. 

More recently, reinforcement learning (RL) has been a trendy 
research area for solving real-time optimization problems. The goal of 
RL is to maximize the preset reward function through interaction and 
exploration with a training environment. Its model-free property makes 
it flexible and adaptable to different systems and driving conditions. Q- 
learning is a type of RL that determines actions based on Q-values which 
represent the expected rewards of the actions. EMS derived from Q- 
learning has shown not only improved fuel economy, but also rapid 
convergence in [14,15]. These works also demonstrate the effectiveness 
and adaptability without any prior knowledge. To obtain superior re
sults, the study in [16] discusses the effect of parameter discretization 
and training settings on Q-learning. Despite the advantages of RL, the 

problem of “curse of dimensionality” may arise due to the discretization 
of states and control variables, which limits its use. With the introduc
tion of neural networks, these limitations can be addressed through 
Deep Reinforcement Learning (DRL). DRL has been implemented in 
[17,18] and shows excellent convergence and low fuel consumption, 
which also confirms its adaptability in different driving cycles. In [19], 
an EMS for series–parallel plug-in hybrid electric buses is implemented 
based on a novel DRL strategy called deep deterministic policy gradient 
(DDPG). Thereby, traffic information and passenger flow are considered, 
which makes the results more robust and generalizable. To improve the 
training efficiency of DDPG, expert knowledge is incorporated in [20], 
which results in a fast learning process with improved fuel economy that 
confirms its generalization. Similarly, a rule-based expert system is 
introduced to avoid the cold start of the training process in [21]. The 
work considers battery thermal safety and the results show doubled 
training efficiency and promising overall driving costs. In [22], soft 
actor-critic RL is exploited to determine the power distribution of a 
hybrid bus, which takes into account the thermal safety of the batteries. 
The results show a significant reduction in training time and total 
driving costs including fuel consumption and battery degradation. 

In addition to the above energy management optimization aspects 
for general hybrid vehicles, the aging of fuel cells is a key point that must 
be considered for fuel cell hybrid vehicles. The fuel cell mainly consists 
of three components: electrode, electrolyte membrane and bipolar plate. 
Degradation of any of these components can affect the overall lifetime of 
the fuel cell [23]. In [24], the degradation modes of the different com
ponents and several methods for estimating the degradation of a fuel cell 
are summarized. Accordingly, the fuel cell service life estimation 
methods are roughly categorized into data-driven methods and model- 
based methods. Although the fuel cell state and its degradation can 
not be directly and explicitly determined by the EMS, an analysis of the 
degradation process for HEVs based on operating conditions proposed in 
[25] has shown that the operating conditions can affect the fuel cell 
degradation and its service life. In the model-based approach, different 
grades of models have varying degrees of accuracy and computational 
load. By using computational fluid dynamics (CFD) methods, the com
plex performance of fuel cells can be well studied from geometry [26,27] 
to degradation [28], especially in material and chemical perspectives, 
but with a large computational load. Since EMS requires an estimation 
with low computational cost, an operation-based estimation is often 
used in the energy management problems. In [29], a simplified elec
trochemical model that considers the decay of the electrochemical sur
face area is employed in the EMS. The results show that the EMS can 
extend the fuel cell service life and achieve low average operational cost. 
In [30], a stochastic dynamic programming based EMS is introduced. 
The design of the EMS takes into account the effects on the voltage 
degradation of the fuel cell, which results in a significant increase in 
lifetime with only a small increase in hydrogen consumption, and 
therefore reduces the overall cost. 

1.3. Motivation 

In many parts of the world, electrified rail transport with power 
supply via overhead lines is a widespread solution. However, due to 
economic advantages, diesel powered railway vehicles operating 
without overhead lines still dominate on many branch lines in less 
populated areas. As an environmentally friendly alternative to these 
diesel railway vehicles, fuel cell hybrid propulsion with zero emissions is 
of great interest. The electric motors of these vehicles are powered both 
by fuel cells and batteries, and it is necessary to properly manage the 
power distribution to achieve battery charge-sustaining and keep the 
operational costs low. To obtain an adaptive EMS, DRL is a highly 
prospective approach. To the authors’ knowledge, so far there are no RL- 
based EMS studies for fuel cell railway vehicles in the literature. 

In the case of railway vehicles, the number of passengers is very 
stochastic, which leads to uncertainties in the required power. In 
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addition, due to the restricted transient response of a fuel cell system, 
the battery operates as a buffer system to support the dynamic power 
demand while the fuel cell system covers the average power demand. 
Due to the large differences between the average and maximum power 
of a typical railway vehicle, it makes sense to use a large sized battery 
and a fuel cell with relatively low power. However, this causes the 
vehicle to have difficulties maintaining the battery’s state of charge 
during long trips, which makes it difficult for the training to converge 
when using DRL. Moreover, fuel cell degradation is a major obstacle to 
commercial deployment. Therefore, its loss should be factored into the 
overall operational costs to optimize the design in advance. 

1.4. Contributions 

To address the above issues, a DRL-based EMS that accounts for fuel 
cell aging is proposed in this paper. The main contributions are listed 
below:  

• The Twin Delayed Deep Deterministic Policy Gradient (TD3) 
approach is used as one of the advanced DRL methods to develop an 
intelligent energy management strategy for fuel cell and battery 
railway vehicles.  

• An online evaluation model for fuel cell voltage degradation 
considering four operation modes is introduced to predict fuel cell 
aging.  

• A newly designed reward function involving battery charge- 
sustaining is developed to stabilize the training process.  

• A stochastic training environment considering passenger flows for 
railway vehicles based on the measured driving data is used to 
simulate real driving conditions. 

1.5. Organization 

Section 2 presents the modeling of the vehicle and hybrid power 
system, including the fuel cell aging. In Section 3, the DRL-based energy 
management problem is formulated, and the framework of the TD3-EMS 
is presented. Section 4 presents the training and simulation results, and 
analysis and discussion are performed. Finally, Section 5 gives a sum
mary of this work. 

2. System modeling 

2.1. Fuel cell hybrid railway vehicle modeling 

The drivetrain of the railway vehicle is shown in Fig. 1. A well-tuned 
proportional–integral (PI) driver controller is used to control the vehicle 

speed according to the speed profiles. 
As one of the power sources to satisfy the dynamic load demands, a 

battery system with a rated voltage Vbat of 850V and a capacity Qbat of 
207Ah is provided for the railway vehicle. As shown in Fig. 2, this 
battery system is modeled with three R-C elements to provide an accu
rate approximation of the dynamic performance. The main parameters 
related to the state of charge (SoC) of the battery are shown in Fig. 3. 

A proton-exchange membrane (PEM) fuel cell system with an inter
nal DC/DC converter covers the average power demand. It has a 
maximum power output of 200kW. The hydrogen mass flow can be 
calculated by looking up the characteristic curve in Fig. 4. 

To adress the energy management problem, the vehicle modeling 
mainly considers longitudinal vehicle dynamics and battery dynamics. 
Other powertrain components consisting of electric motors, power 
electronics, auxiliary systems and fuel cell systems are modeled based on 
look-up tables. The vehicle model was created in MATLAB/Simulink and 
validated through a Hardware-in-the-Loop (HiL) test. The associated 
data and modeling details can be found in [6]. Table 1 presents the main 
system equations. The related parameters are listed in Table 2 and the 
variables are summarized in Table 3. 

In the fuel cell hybrid vehicle, the power distribution is realized by 
controlling the fuel cell power Pfc through the energy management 
system. By following a reference speed profile, the power demand Pdem is 
controlled by the driver model and can be obtained by summing up the 
traction power Ptraction = Ft⋅vveh, the power losses along the drivetrain 
Ploss and the auxiliary system power Paux. Based on the quasi-steady-state 
modeling, Ploss can be obtained from lookup tables and Paux is assumed to 
be constant 55kW. Since the source-side DCDC converter is used to 
regulate the voltage of the DC link, and the power output of the fuel cell 
system is controlled by the EMS, the battery system operates as a buffer 
energy source. Some constraints due to the battery and the fuel cell 
system are specified in Table 4. 

Fig. 1. Structure of the fuel cell and battery railway vehicle model.  

Fig. 2. Battery’s equivalent circuit.  
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2.2. Fuel cell aging simulation 

The application of the DRL based approach to obtain a promising 
EMS requires a timely reward function for the evaluation of the fuel cell 
aging. From an energy management perspective, the output of the EMS, 
i.e., the desired fuel cell power, has an impact on the fuel cell aging [25]. 
Therefore, an operation mode based fuel cell aging evaluation is 
appropriate. In this work, a fuel cell degradation model considering four 

common operation modes is introduced. These four modes of operation 
include: open circuit operation (OCV), start-stop cycles (SSC), voltage 
cycles (VC) and calendric aging (CA) [31,32]. The aging of fuel cells is 
regarded as the sum of the degradations caused by the four operation 
modes: 

ΔUtotal = ΔUOCV +ΔUSSC +ΔUVC +ΔUCA, (1) 

In the following introductions for each degradation, the inputs of the 
degradation model, which are the cell voltage degradation Ucell and the 
increment of the cell voltage ΔUcell, are in V, while the intermediate 
values ΔUOCV,ΔUSSC,ΔUVC,ΔUCA and the output ΔUtotal are in μV. 

When the fuel cell is operated at open circuit voltage, the degrada
tion of the fuel cell is accelerated [32]. In the degradation model, when 
the voltage is higher than 0.8V, the fuel cell is considered to work at 
open circuit voltage [32]. The voltage loss caused by open circuit 
operation ΔUOCV can be calculated by: 

ΔUOCV = C1⋅tOCV, (2)  

where tOCV is the time in hours under the OCV working condition. 
The fuel cell system is automatically shut down when the system 

power is below 12kW. Each time the fuel cell system shuts down, the cell 
voltage degradation ΔUSSC is: 

ΔUSSC = C2⋅nSSC, (3)  

where nSSC denotes the number of starts and stops of the fuel cell system. 
When the fuel cell system is working at a constant voltage, the per

formance of the fuel cell continues to decrease [33]. ΔUCA caused by the 
calendric aging is related to the cell voltage Ucell: 

ΔUCA = (C3 +C4⋅eC5⋅Ucell )⋅tCA, (4)  

where tCA is the time in hours under the CA working condition. 
During the operation of the fuel cell system, the voltage cycling can 

lead to voltage degradation [32]. It is assumed that the voltage degra
dation caused by the voltage cycling is only related to ΔUcell. It is 
counted once, when the voltage remains constant for 5 s, or either 
changes from rising to falling or from falling to rising. Using nVC as the 
number of counts, the formula is given: 

Fig. 3. Parameters of the battery’s equivalent circuit at 25 ◦C: Open circuit 
voltage Voc in V and internal resistance R0 in Ω. 

Fig. 4. Hydrogen consumption curve of the fuel cell system.  

Table 1 
Main system equations for the hybrid railway vehicle.  

Description System equations 

Vehicle dynamics m⋅
dvveh

dt
= Ft − Fm − frmgcos(α) − 1

2
ρairCairAv2

veh − mgsin(α)
Total mass m = mveh + np⋅mp  

Hydrogen mass 
flow 

ṁH2 = f(Pfc)

Battery dynamics 
˙SoC = −

Ibat

Qbat
= −

Voc −
∑3

i=1Vi

2R0Qbat 
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
Voc −

∑3
i=1Vi

2R0Qbat

)2

−
Pbat

R0Q2
bat

√
√
√
√

Polarization voltage V̇i =
Ibat

Ci
−

Vi

Ri⋅Ci
, i = 1,2,3  

Power demand Pdem = Ft ⋅vveh + Ploss + Paux  

Power distribution Pbat = Pdem − Pfc   

Table 2 
Main parameters for the hybrid railway vehicle.  

Symbol Parameters Values 

mv  Vehicle mass 51000 kg 
mp  Passenger mass 75 kg 
g  Gravitational acceleration 9.81 m/s2  

fr  Rolling resistance coefficient 0.0015 
ρair  Air density 1.2 kg/m3  

Cair  Aerodynamic coefficient 0.15 
A  Vehicle front area 10 m2   

Table 3 
Main variables for the hybrid railway vehicle.  

Variables Description Variables Description 

α  Railroad slope t  Time 
vveh  Vehicle speed m  Total mass 
Ft  Electric traction or brake force Fm  Mechanical brake force 
np  Passenger numbers ṁH2  Hydrogen mass flow 
SoC  State of charge Pbat  Battery power 
R0  Internal ohmic resistance Ibat  Battery current 
Voc  Open circuit voltage Vi  Polarization voltage 
Ci  Polarization capacitance Ri  Polarization resistance 
Pdem  Demand power Paux  Auxiliary systems’ 

power 
Ploss  Power losses along the 

drivetrain 
Pfc  Fuel cell power  

Table 4 
System constraints.  

Min Variable Max 

0 kW Pfc  200 kW 
− 5 kW/s ΔPfc/Δt  5 kW/s 
0.15 SoC  0.95 
− 900 A Ibat  900 A  
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ΔUVC = C6⋅eC7ΔUcell ⋅nVC, (5) 

Due to the difference in structure and materials of different fuel cells, 
the voltage degradation caused by the four operation modes varies 
greatly [34]. In this work, the Ballard Mark 513 fuel cell is utilized. The 
parameters of the fuel cell degradation model are adapted accordingly, 
as shown in Table 5. 

The model prediction results for the Ballard Mark 513 fuel cell aging 
are compared with available experimental aging data [35–37] in Fig. 5. 
The experimental data in cases 1–3 are the average voltage degradation 
obtained by operating for a long time at different voltages. As for cases 
4–8, the operating voltage of the fuel cells varies constantly between 
high and low voltages for 21000 cycles. Each cycle lasts one minute. The 
operating voltage and testing duration for the aging tests are shown in 
Table 6. 

In Fig. 6, the polarization curve of the fuel cell is given. The studied 
fuel cell system has 1320 cells with each 300cm2 cell areas. As a result, 
the hydrogen consumption curve is extended considering the cell 
voltage degradation as shown in Fig. 7. 

3. Deep reinforcement learning strategy for energy management 
system 

Relying on the EMS, this module determines the power distribution 
between the fuel cell system and the battery system. Considering the 
constraints of the system, the EMS in this work aims to achieve best fuel 
economy, maintain battery SoC and slow down the fuel cell aging. To 
obtain an adaptive online available strategy, the TD3-based deep rein
forcement learning is applied. 

Generally, the energy management problem in the form of RL is 
represented as a Markov decision process (MDP). In the following sub
sections, the TD3 agent is presented and the settings for training are 
explained. After the training process, the trained policy obtained from 
the TD3 agent is utilized as the EMS. In Fig. 8, an overview of the TD3- 
based energy management for the fuel cell hybrid railway vehicle is 
displayed. 

3.1. TD3 algorithm 

In the area of RL, an MPD is applied to represent the interaction 
between an agent and its environment. According to the current state s 
of the environment, the agent performs an action a that follows a policy 
for the environment. Meanwhile, the agent receives a reward r for per
forming the action and a new state s′ from the environment. Based on 
this feedback, the agent updates the policy. Its target is to find the policy 
π which maximizes the action-value function. Hereby, the action-value 
function, also known as the Q function is specified as the expected dis
counted sum of rewards: 

Q(s, a) = E[
∑T

k=0
γkrk(s, a)], (6)  

where γ is the discount factor. 

The twin delayed deep deterministic policy gradient algorithm (TD3) 
is among the state-of-the-art RL algorithms with an actor-critic config
uration [38]. The policy is approximated by an actor neural network πϕ. 
This network maps states into continuous actions and has the 

Table 5 
Parameters of fuel cell degradation model based 
on Ballard Mark 513.  

Parameters Values 

C1  11.4 
C2  14 
C3  0.5057 
C4  0.07866 
C5  2.965 
C6  0.0045 
C7  16.46  

Fig. 5. Comparison of the experimental results and the prediction results from 
the fuel cell degradation model. 

Table 6 
Aging test conditions for case 1–8 based on Ballard Mark 513.  

Case 
number 

Operating 
voltage 

Time 

1 0.62V  5600 h 
2 0.78V  11000 h 
3 0.82V  11000 h 
4 0.6 − 0.8V  21000 cycles, each has 25 s for 0.6V, 30 s for 0.8V 

and 5 s for changing  
5 0.6 − 0.9V  21000 cycles, each has 45 s for 0.6V, 10 s for 0.9V 

and 5 s for changing  
6 0.6 − 0.9V  21000 cycles, each has 25 s for 0.6V, 30 s for 0.9V 

and 5 s for changing  
7 0.6 − 0.9V  21000 cycles, each has 5s for 0.6V, 50 s for 0.9V 

and 5 s for changing  
8 0.6 − 1.0V  21000 cycles, each has 25 s for 0.6V, 30 s for 1.0V 

and 5 s for changing   

Fig. 6. Fuel cell polarization curve.  

Fig. 7. Aging considered hydrogen consumption map of the fuel cell system 
with the inputs of the fuel cell system power and the total cell voltage 
degradation. 
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parameters denoted by ϕ. The action-value function Q is represented by 
two critic neural networks Qθ1 and Qθ2 with the network parameters θ1 
and θ2. Its role is to evaluate actions and lead the actor to a favorable 
performance. These two critic networks constitute a clipped double-Q 
learning which can reduce the overestimation bias. Meanwhile, the 
target network approach is employed. The actor neural network πϕ and 
the two critic neural networks Qθ1,2 have their corresponding target 
networks πϕ′ and Qθ′1,2

. The target network parameters ϕ
′

, θ
′

1 and θ
′

2 

initially have the same values as the corresponding original networks 

and are slowly updated, which provides consistent goals and stabilizes 
the training process. 

The training of the two critic neural networks aims at minimizing the 
following loss function: 

L = [y − Qθi (s, a)]
2
, i = 1, 2, (7)  

whereby a single target value y is computed from the target neural 
networks: 

Fig. 8. TD3-based energy management for the fuel cell hybrid railway vehicle.  
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y = r+ γmin
i=1,2

Qθ′i
(s′

, πϕ′ (s′

) + ∊′

), (8)  

where, ∊′

∼ clip(N (0,0.2), − 0.5, 0.5) is a clipped noise. 
The policy in the actor neural network is set to be updated less 

frequently than the critic neural networks. The objective is to minimize 
the loss function before updating the policy. Using the deterministic 
policy gradient algorithm [39], the policy can be updated by taking the 
gradient of the expected return: 

∇ϕJ(ϕ) = E[∇aQθ1 (s, a)|a=πϕ(s)∇ϕπϕ(s)]. (9)  

3.2. TD3-based energy management strategy 

As in the DRL configuration shown in Fig. 8, the training environ
ment including the entire vehicle model interacts with the TD3-based 
agent. The settings of agent actions, environment states, and rewards 
are critical to the interaction and learning of the agent. In this subsec
tion, the setup of the TD3-based energy management is explained in 
detail. 

3.2.1. TD3-based agent actions 
The agent controls the power output of the fuel cell system. Thus, the 

desired fuel cell power is a direct control input to the environment, 
where the fuel cell system is automatically controlled by its own DCDC 
converter to achieve the desired power output. Therefore, the action is 
defined as 

a = [Pfc]. (10)  

3.2.2. Environment states 
The agent needs proper states information to reasonably manage the 

power. The power demand of the vehicle, the state of the fuel cell sys
tem, and the state of the battery system are used to form the environ
ment states. In this case, the power demand Pdem, the fuel cell system 
power Pfc, and the state of charge SoC can represent the power flow of 
the power system, the state of the fuel cell system and the dynamics of 
the battery, respectively. The vehicle velocity vveh, the acceleration v̇veh 

and the passenger numbers np characterize the vehicle dynamics 
considering the passenger flow. Thus, the states of the environment are 
set to be: 

s = [Pdem,Pfc, SoC, vveh, v̇veh, np]. (11)  

3.2.3. Rewards 
The reward setting is crucial because the reward not only provides 

feedback to the agent on the effectiveness of the action, but also strongly 
influences the success of the training convergence. In this work, the 
reward combines the cost of hydrogen consumption LH2 , the cost of fuel 
cell aging Lfcaging , and the penalty for battery charge-sustaining Gbat: 

r = − LH2 − Lfcaging +Gbat. (12) 

Since the cost parts LH2 and Lfcaging are kept as small as possible and the 
goal of the TD3-agent is to maximize the reward, LH2 and Lfcaging are 
assigned minus signs in the reward function. 

Accordingly, at a time step Δt = 1 s with the hydrogen price pH2 , the 
hydrogen cost LH2 is defined as follows: 

LH2 = pH2 ⋅ṁH2 ⋅Δt. (13) 

To analyze the effects of fuel cell aging in a meaningful way, LH2 

denotes the hydrogen cost under non-degradation conditions. The 
additional hydrogen cost caused by fuel cell degradation ṁH2 ,aging can be 
calculated by looking up Fig. 7 and subtracting the hydrogen cost under 
non-degradation conditions. Then the fuel cell aging cost is: 

Lfcaging = pfc⋅
ΔUdeg

ΔUtolerance
+ pH2 ⋅ṁH2 ,aging⋅Δt, (14)  

where pfc is the fuel cell system price and ΔUtolerance is the tolerable 
voltage degradation. According to [40], ΔUtolerance is defined as the 10% 
voltage degradation at 1.0 − 1.5A/cm2, which in this work corresponds 
to 74mV. 

Furthermore, Gbat represents the penalty term for the battery. In 
contrast to the general method of using the squared error of the SoC to 
realize the sustained charging, a penalty term is defined that provides 
more efficient immediate feedback to the agent: 

Gbat = wbat⋅(SoC − SoCref)⋅Ibat, (15)  

where wbat is the weighting factor of the battery’s charge-sustaining. It 
has the unit of $/kA, which keeps Gbat dimensionally compatible with 
the hydrogen cost. SoCref represents the reference value of SoC. 

3.3. Environment settings for training 

In the RL configuration, the environment should simulate the com
plete vehicle behavior to provide sufficient training information to the 
agent. To obtain a properly adaptive TD3-EMS and avoid overfitting in 
the training, a comprehensive set of speed profiles is required. In this 
work, recorded railroad data is used. The raw data were collected on the 
railroad line between Aachen and Cologne, Germany. In total, four 
speed profiles were recorded for different time periods during the day. In 
order to fully utilize the data to represent different driving conditions 
and to maintain a certain degree of realism, the speed profiles between 
every two adjacent stations are randomly selected and finally combined 
into one speed profile. Fig. 9 shows the generation of the random speed 
profiles based on the recorded ones. The number of passengers is 
randomly selected from 0 to 150, taking into account the variation of the 
total vehicle mass due to the passenger flow. 

4. Training and simulation results 

4.1. Training settings 

For the proposed TD3-based energy management strategy (TD3- 
EMS), a training procedure should be performed before testing. The 
settings for training the TD3-agent are summarized in Table 7. To fully 
explore the policy, the normally distributed noise added to the action is 
large at the beginning and then its variance decreases with a 98% dis
count rate per training episode i. 

As in the reward settings, the hydrogen consumption and aging costs 
are unified as prices. To calculate this part of the reward, the hydrogen 
price pH2 is given as 0.002$/g [41]. According to [42], the total stack 
cost for a 100kW system is $70,000, thus pfc is $140,000 for the fuel cell 
system under study. As for the battery system, SoC for each training 
episode always starts at 0.6 and the reference value of SoC is also 0.6. 
Hereby, the weighting factor wbat determines the impact of the battery’s 
SoC. To achieve proper charge-sustaining, this factor is 0.03 after 
repeated tuning. 

At the beginning of the training process, the replay buffer acquires 
the memory data in the first ten training episodes. The speed profiles and 
the passenger flow are randomly generated for each episode. Then the 
training of the TD3 agent begins from the eleventh episode. During the 
training, the speed profile and the number of passengers are varied every 
five episodes, allowing the agent to experience different environmental 
situations while maintaining a consistent training environment. 

4.2. Impact of the reward settings on convergence 

The reward setting is critical for training convergence. In this work, 
the SoC of the battery can vary greatly due to the large power dynamics 
of the rail vehicle. When the SoC reaches the system limits shown in 
Table 4, the training episode will be automatically aborted. To achieve 
adaptive maintenance of the SoC and fast convergence of the training, a 
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penalty term (15) is introduced. To show the improvement, another 
TD3-agent with a commonly used penalty term G*

bat is trained for 
comparison: 

G*
bat = w*

bat⋅(SoC − SoCref)
2
, (16)  

where w*
bat is a penalty factor with a value of 20 to penalize the action 

appropriately when the SoC deviates from the reference value. In 
Fig. 10, the proposed TD3-EMS converges at about 150 episodes and 

then remains stationary. The normal TD3-EMS using (16) suffers from 
intense fluctuations and is difficult to converge. This shows that the 
commonly used term (16) does not give valid feedback. For the large 
sized battery in this work, the squared error of the SoC represents the 
deviation from the reference value. As the SoC increment at each time 
step is small, it has a minor effect on the squared error of the SoC no 
matter what action the agent takes. Therefore, this reward term is almost 
constant and hardly reflects the quality of the action. The new reward 
function term (15) is directly related to the battery current and can give 
timely feedback on the effect of the action. The results show that it can 
accelerate and stabilize the training process. In the following sub
sections, only the proposed TD3-EMS with (15) is considered. 

4.3. Simulation results and analysis 

In order to evaluate the proposed TD3-EMS, a test speed profile of the 
railroad route from Aachen to Cologne (test cycle 1) shown in Fig. 11a is 
utilized, which is different from the random speed profiles introduced in 
Section 3.3 for training. A typical fault in the reinforcement learning is 
the overfitting, which results in promising performance on the training 
cycles while not on the test cycles. Despite the different speed profiles 
between the test cycle 1 and the training cycles, they share the same 
railroad route. To investigate the transferability and adaptability of the 
proposed TD3-EMS, another test profile of the railroad route in Baden- 
Württemberg (test cycle 2) shown in Fig. 11b is used. In the following 
subsections, results on passenger flow disturbance, battery’s charge- 
sustaining, fuel cell aging and optimality of the operational cost are 
presented. 

4.3.1. Performance with different passenger flows 
Fig. 12 shows the trajectories of fuel cell power and battery’s SoC 

under the proposed TD3-EMS. As a common disturbance in the rail 
transportation, the passenger flow is considered. From Fig. 12a and 
Fig. 12b, it can be seen that the proposed TD3-EMS controls the fuel cell 
power above 100kW when the railway vehicle is in motion and around 
60kW when the railway vehicle is stopping at the station. Especially in 

Fig. 9. Stochastic environment generated by randomly combining the speed profiles of the corresponding railroad sections from Aachen to Cologne in Germany.  

Table 7 
Settings for training the TD3 agent.  

Networks and parameters Settings and values 

Actor networks Fully-connected layers 400/200/100 units 
Actor learning rate 0.0001 
Critic networks Fully-connected layers 400/200/100 units 
Critic learning rate 0.001 
Optimizer type Adam 
Batch size 64 
Delayed policy update iterations 10 
Target update rate 0.005 
Discount factor 0.99 
Exploration policy N (0,var), var = 3⋅0.98i   

Fig. 10. Comparison of total training rewards by using the proposed reward 
term (15) and the normal reward term (16) for battery ch.arge-sustaining. 
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the acceleration phase of the vehicle, the fuel cell power can be boosted 
up to 150kW. This makes sense because the driving situation causes 
different power demands. The fuel cell power due to different driving 
situations exactly reflects the adaptability of the proposed TD3-EMS. 
Furthermore, the fuel cell power increases as the number of passen
gers increases, indicating the ability of the proposed TD3-EMS to adapt 
to passenger flow. Despite the different passenger flows, the ending SoC 
is kept around 0.6 in Fig. 12c and Fig. 12d. This demonstrates that the 
proposed TD3-EMS has achieved charge-sustaining. 

4.3.2. Battery’s charge-sustaining 
To further investigate the performance of the TD3-EMS in terms of 

battery’s charge-sustaining, the simulations are performed with 
different initial SoC values while the reference SoC remains at 0.6. The 
results of the fuel cell power and the SoC trajectories are displayed in 
Fig. 13. As expected, from Fig. 13a and Fig. 13b, it can clearly be seen 
that the fuel cell power is generally lower when the initial SoC is 0.8 
compared to the case where the initial SoC is 0.4. The resulting SoC 
trajectories shown in Fig. 13c and d indicate a trend of SoC trajectories 
approaching 0.6. In detail, under test cycle 1, the SoC changes at initial 
values of 0.4 and 0.8 are +0.06 and − 0.15, respectively. While under 

test cycle 2, the SoC changes at initial values of 0.4 and 0.8 are +0.21 
and − 0.14, respectively. Hence, a promising adaptability of the TD3- 
EMS in terms of charge-sustaining is demonstrated. 

4.3.3. Fuel cell aging 
To evaluate the aging behavior of fuel cells under the proposed TD3- 

EMS, a reference TD3-EMS without the fuel cell aging term in the reward 
function is used for comparison. The simulation results with 100 pas
sengers are presented in Fig. 14. From the fuel cell power trajectories in 
Fig. 14a and b, it can be seen that the proposed TD3-EMS controls the 
power output of fuel cell system less dynamically than the reference 
TD3-EMS. Fig. 14c and d display the resulting fuel cell voltage degra
dation in four different types. Since the fuel cell does not operate at low 
power under the proposed TD3-EMS, the voltage degradation caused by 
open circuit operation (OCV) is significantly reduced. The less dynamic 
fuel cell power contributes to the reduction of the voltage degradation 
caused by the voltage cycles (VC). In total, the voltage degradation is 
reduced by 40.2% from 5.07μV to 3.03μV in test cycle 1. While in test 
cycle 2, it is reduced by 49.2% from 13.7μV to 6.9μV. In Table 8, the 
detailed voltage degradation with varying passenger numbers is pre
sented. In summary, the proposed TD3-EMS can stabilize the fuel cell 

Fig. 11. Speed and railroad slope profiles of: (a) test cycle 1, (b) test cycle 2.  

Fig. 12. Simulation results under the proposed TD3-EMS for various passenger numbers of: (a) fuel cell power in test cycle 1, (b) fuel cell power in test cycle 2, (c) 
battery’s SoC in test cycle 1, (d) battery’s SoC in test cycle 2. 
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power compared to the reference one, reducing the cell voltage degra
dation by up to 50.6%. It shows that the proposed TD3-EMS has the 
ability to slow down the fuel cell aging. 

4.3.4. Optimality of operational cost 
The operational cost of the railway vehicle consists of the hydrogen 

cost and the fuel cell aging cost. To verify the optimality in the opera
tional cost of the proposed TD3-EMS, an offline global optimization 
strategy is used as the benchmark. The offline strategy is based on PMP 
and is verified by dynamic programming in [8]. To show the improve
ment of the proposed TD3-EMS as an online strategy, the TD3-EMS 
without considering aging is used for comparison. The simulation 

Fig. 13. Simulation results under the proposed TD3-EMS for various initial SoC values of: (a) fuel cell power in test cycle 1, (b) fuel cell power in test cycle 2, (c) 
battery’s SoC in test cycle 1, (d) battery’s SoC in test cycle 2. 

Fig. 14. Simulation results and the comparison between the proposed TD3-EMS and the one without considering aging: (a) fuel cell power in test cycle 1, (b) fuel cell 
power in test cycle 2, (c) fuel cell voltage degradation in test cycle 1, (d) fuel cell voltage degradation in test cycle 2. 
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results are presented in Table 9. It can be seen that the hydrogen cost 
with the proposed TD3-EMS is generally close to the benchmark. How
ever, there are still some gaps in the total operational costs. It is because 
of the lack of global information, the proposed TD3-EMS reacts to the 
timely power demands and manages higher power dynamics than the 
benchmark, resulting in larger voltage degradation, especially in voltage 
cycles (VC). Compared to the strategy without considering aging, the 
proposed TD3-EMS indicates up to 28% improvement in the total 
operational cost. On the one hand, due to the consideration of the fuel 
cell aging, the power output of the fuel cell system trends to be more 
stable than the strategy without considering aging. On the other hand, 
due to the convexity of the hydrogen consumption characteristic curve 
shown in Fig. 4, the stabilized fuel cell power can benefit the operational 
cost under the condition of charge-sustaining mode. In summary, the 
proposed TD3-EMS shows superiority as an online strategy in terms of 
the operational cost. 

5. Conclusions 

In this work, a deep reinforcement learning-based energy manage
ment strategy considering fuel cell aging is proposed for fuel cell and 
battery hybrid rail vehicles. Firstly, a fuel cell and battery railway 
vehicle model is introduced. To improve the forecast for the aging of the 
fuel cell system, an operation mode-oriented estimation model is 
introduced. Based on the vehicle model, an energy management prob
lem is formulated under the reinforcement learning structure and one of 
the state-of-the-art DRL methods TD3 is used to solve the problem. To 
achieve more realistic simulations and to overcome overfitting, a sto
chastic training environment based on measured vehicle speed profiles 
and random passenger numbers is created. The training is done through 
the interaction between the TD3 agent and the environment. Thereby, a 
new reward term for the battery’s charge-sustaining is introduced. The 
training results indicate a more stable convergence than the one with the 
commonly used error squared SoC. After training, the proposed TD3- 
EMS is initially tested with two real world speed profiles and different 
numbers of passengers, which shows promising capabilities for SoC 
maintenance. The proposed TD3-EMS achieves up to 50.6% reduction in 
fuel cell voltage degradation compared to the reference TD3-EMS 
without considering aging. Moreover, the overall operational cost is 
investigated for the two strategies and a benchmark strategy. The pro
posed TD3-EMS show results closer to the benchmark with an 
improvement of up to 28% compared to another online strategy. In 
future work, more online available information that facilitates 
approaching the benchmark optimum will be considered to further 
reduce overall operational costs. 
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Pischinger S, Hameyer K. An adaptive pmp-based model predictive energy 
management strategy for fuel cell hybrid railway vehicles. eTransportation 7:2021; 
100094.  

[14] Liu C, Murphey YL. Optimal power management based on q-learning and neuro- 
dynamic programming for plug-in hybrid electric vehicles. IEEE Trans Neural 
Networks Learn Syst 2019;31(6):1942–54. 

[15] Du G, Zou Y, Zhang X, Kong Z, Wu J, He D. Intelligent energy management for 
hybrid electric tracked vehicles using online reinforcement learning. Appl Energy 
2019;251:113388 . 

[16] Xu B, Rathod D, Zhang D, Yebi A, Zhang X, Li X, Filipi Z. Parametric study on 
reinforcement learning optimized energy management strategy for a hybrid 
electric vehicle. Appl Energy 2020;259:114200 . 

[17] He D, Zou Y, Wu J, Zhang X, Zhang Z, Wang R. Deep q-learning based energy 
management strategy for a series hybrid electric tracked vehicle and its 
adaptability validation. In: 2019 IEEE transportation electrification conference and 
expo (ITEC), IEEE; 2019. P. 1–6.  

[18] Hu Y, Li W, Xu K, Zahid T, Qin F, Li C. Energy management strategy for a hybrid 
electric vehicle based on deep reinforcement learning. Appl Sci 2018;8(2):187. 

[19] Wu Y, Tan H, Peng J, Zhang H, He H. Deep reinforcement learning of energy 
management with continuous control strategy and traffic information for a series- 
parallel plug-in hybrid electric bus. Appl Energy 2019;247:454–66. 

[20] Lian R, Peng J, Wu Y, Tan H, Zhang H. Rule-interposing deep reinforcement 
learning based energy management strategy for power-split hybrid electric vehicle. 
Energy 2020;197:117297 . 

[21] Wu J, Wei Z, Liu K, Quan Z, Li Y. Battery-involved energy management for hybrid 
electric bus based on expert-assistance deep deterministic policy gradient 
algorithm. IEEE Trans Vehicul Technol 2020;69(11):12786–96. 

[22] Wu J, Wei Z, Li W, Wang Y, Li Y, Sauer D. Battery thermal-and health-constrained 
energy management for hybrid electric bus based on soft actor-critic drl algorithm. 
IEEE Trans Ind Inf.  

[23] Wu J, Yuan XZ, Martin JJ, Wang H, Zhang J, Shen J, Wu S, Merida W. A review of 
pem fuel cell durability: degradation mechanisms and mitigation strategies. 
J Power Sour 2008;184(1):104–19. 

[24] Yue M, Jemei S, Gouriveau R, Zerhouni N. Review on health-conscious energy 
management strategies for fuel cell hybrid electric vehicles: degradation models 
and strategies. Int J Hydrogen Energy 2019;44(13):6844–61. 

[25] Li J, Hu Z, Xu L, Ouyang M, Fang C, Hu J, Cheng S, Po H, Zhang W, Jiang H. Fuel 
cell system degradation analysis of a chinese plug-in hybrid fuel cell city bus. Int J 
Hydrogen Energy 2016;41(34):15295–310. 

[26] Carcadea E, Ismail MS, Ingham DB, Patularu L, Schitea D, Marinoiu A, Ion- 
Ebrasu D, Mocanu D, Varlam M. Effects of geometrical dimensions of flow channels 
of a large-active-area pem fuel cell: a cfd study. Int J Hydrogen Energy 2021;46 
(25):13572–82. 

[27] Chellehbari YM, Adavi K, Amin JS, Zendehboudi S. A numerical simulation to 
effectively assess impacts of flow channels characteristics on solid oxide fuel cell 
performance. Energy Convers Manage 2021;244:114280 . 
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