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Abstract
This work develops a supervised learning-based strategy using Long Short-Term Memory Networks
(LSTMN) to distribute power between fuel cells and batteries for fuel cell trains. The learning-based
strategy exceeds the adaptive Pontryagin’s minimum principle (PMP)-based strategy in all driving con-
ditions, which is state-of-the-art. In the case with the most significant difference between the learning-
based and the adaptive PMP-based strategy, more consumption of 1.84 % than the off-line PMP strategy,
which determines the minimal hydrogen consumption for the same load profiles, is observed for the
learning-based strategy. In comparison, 2.54 % more consumption is required by the adaptive PMP-
based strategy compared to the off-line strategy.

Introduction
The world’s first commercialized hybrid passenger train powered by fuel cells is developed by Alstom
and began its operation in Germany in 2018, whose energy source system consists of batteries and proton-
exchange membrane (PEM) fuel cells. Since the power change rate of fuel cell systems in hybrid vehicles
is limited due to lifetime consideration, another battery system is required to cover the frequently vary-
ing load power in various driving conditions [1, 13]. Benefited from this kind of hybrid power source
structure, the hydrogen usage efficiency of the hydrogen vehicles can be maximized by possibly optimal
power distribution between fuel cells and batteries [14]. Many research works about energy manage-
ment for hydrogen-powered vehicles are published in recent years, and some comprehensive reviews can
be found in [3, 15]. The energy management strategies can be classified into three primary types: the
rule-based method, the optimization-based method, and the learning-based method [4]. Developing the
rule-based strategies and tuning their parameters are time-consuming, and the rule-based strategy is not
optimal at the same time due to insufficient expertise.
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The optimization-based methods are divided into global and local optimization-based methods. Further-
more, the global optimization-based energy management strategy is further classified into Pontryagin’s
Minimum Principle (PMP) as well as Dynamic Programming (DP). It has to be mentioned that the
global optimization-based methods are off-line strategies as references to on-line strategies. For the lo-
cal optimization-based power distribution methods, the most famous ones are the adaptive Pontryagin’s
Minimum Principle-based strategy (adaptive PMP) as well as the Equivalent Consumption Minimization
Strategy (ECMS). Mathematically, ECMS can be obtained from the adaptive PMP because the equiva-
lent factor defined in ECMS is linked to the co-state in the adaptive PMP [6]. The most crucial challenge
faced with ECMS and the adaptive PMP is estimating the equivalent factor or the co-state [16, 17]. To
our best knowledge, an analytical formula is proposed based on estimated mean values of fuel cell system
power as well as the actual battery SoC values in [6] to estimate the co-state accurately and physically.
However, the formula in [6] is based on average fuel cell power, and does not consider a so-called time
effect. After checking the off-line PMP results, the co-state amplitude at the beginning of driving cycles
is larger than that at the end. However, the formula in [6] calculates the same co-state values for the
initial and end time point of the driving cycles. Therefore, this kind of sequence or time effect is not
considered by the adaptive PMP method.

With machine learning technology developed, the learning-based strategies for hybrid vehicles attract
more and more attention. The kind of sequence effect mentioned before can be taken into account by
machine learning [8]. However, an enormous amount of data is required to train the learning-based
method’s control policy or prediction mechanism. Among the learning-based methods, the reinforce-
ment learning is widely applied to develop energy management for hybrid vehicles in recent years [10].
Unlike the supervised learning, the reinforcement learning is a learning process of the policy principle
by utilizing the interaction between agents and the environment under the pre-definition of a reward
function. The advantage of reinforcement learning is that it can learn long-term accumulated rewards.
However, for hybrid vehicles, its most significant drawback lies in the fact that the limited transferability
of the trained control models. In this work, the long short-term memory network (LSTMN), as the most
useful variant of RNN, is utilized to distribute load power for hybrid trains powered by fuel cells and
batteries. Following contributions are included:

• The input variables are chosen based on the physical correlation between them and the output fuel
cell power under the optimal control theory. Therefore, a small amount of data is required to train
the learning-based strategy.

• After comparing the supervised-learning-based strategy to the off-line PMP strategy and the most
energy efficient adaptive PMP-based strategies to our knowledge, a higher hydrogen usage effi-
ciency than the adaptive PMP-based strategy is observed for the developed supervised-learning-
based strategy.

Modeling of the serial hybrid powertrain
The entire drivetrain’s configuration is displayed in Fig. 1. The fuel cell system HD8 is supplied by the
company Ballard, and it has a maximum net output power of 200 kW. The battery system has an energy
capacity of about 200 kWh and a nominal voltage of 850 V, which can provide a maximal charge and
discharge current of 900 A. The DC/DC converter is supplied by Siemens, which can provide a peak
power of more than 1 MW and has a DC-link voltage of 1650 V.

The SoC of the entire battery system and the train speed are chosen as the state variables, while lookup
tables are applied for modeling other subsystems’ power losses. The exact models of each subsystem of
the fuel cell train, as well as their related parameters, can be found in [6]. The altitude and speed profiles
of three train lines are considered. The driving cycle 1 in Fig. 2a will be applied for training the neural
network in the next section. The driving cycle 2 in Fig. 2b will be tested to validate the trained model,
which comes from Regional Express 1 running between Aachen and Cologne. The driving cycle 3 in
Fig. 2c corresponds to the Regional Express 27 running between Brandenburg and Berlin. This driving
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cycle is an entire-day velocity trajectory of 19 hours and will be used for training or validation in an
on-line simulation environment.

Fuel Cell System

M
3 ~

Battery System

DC/DC Converter DC/AC Converter

Electrical Machines

Gear System

Wheels and AxlesAuxiliary Load Power

Fig. 1: Configuration of the serial hybrid drivetrain.

(a) (b)

(c)

Fig. 2: Three driving cycles used in training and test: (a) Driving cycle 1 for training, (b) Driving cycle
2 for test, (c) Driving cycle 3 between Berlin and Brandenburg for training and test.

Machine learning-based strategies
This section consists of three parts: in the first part, the process of choosing input variables is explained,
which has not been found in other works related to machine learning-based strategies for hybrid vehicles.
In the second part, the LSTMN method is briefly introduced. Finally, in the third part, the training and
test of models are displayed, and the most promising control block is prepared for validation in an on-line
simulation environment in the next chapter. The whole process of developing the machine learning-based
strategy is presented in Fig. 3.

Selection of input variables

The selection of input variables of the neural network is inspired by the adaptive PMP-based algorithm
developed by the authors before. In [6], the adaptive PMP-based algorithm is described in detail. There-
fore, a full review is not done here, and merely the process of choosing the input variables is explained. In
the adaptive PMP-based strategy, the control variable is determined by minimizing the so-called Hamil-
tonian in every time instant as follows:

H(SoC(t),Pfc(t),λ(t), t) = ṁH2(Pfc(t))+λ · ˙SoC(t), (1)
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Fig. 3: Flow chart of developing the machine learning-based strategy, whereby the LSTMN method is
used for the machine learning.

whereby ṁH2 is the hydrogen mass flow mentioned before, and λ represents the co-state which is eventu-
ally a Lagrange factor. Then, by solving the following minimization problem, the optimal fuel cell power
is determined in every time instant:

P∗
fc(t) = argmin

Pfc(t)
(H(SoC(t),Pfc(t),λ(t), t)). (2)

The estimation of the co-state is crucial for the performance of the adaptive PMP-based strategy. In
[6], an analytic formula for estimating the co-state is derived from the energy conservation principle as
follows:

λ = −Voc ·Q · dṁH2

dPfc

∣∣∣∣
Pfc=Pfc

. (3)

The battery capacity Q is assumed constant in this work. Then, according to (3), The mean value of fuel
cell power and the battery open-circuit voltage Voc, which is dependent on the SoC, influence mainly the
co-state. After inserting (1) and (3) into (2), the control variable, namely the fuel cell power, depends on
various inputs, including SoC, battery voltage, battery capacity, hydrogen consumption curves, average
values of fuel cell power, demand load power as well as time.

The influence of the time or sequence effect on the output control variable is not apparent. In order to
show the time effect, the co-state trajectories resulting from off-line PMP strategies for various driving
cycles are demonstrated in Fig. 4. Thereby, the dependency of the co-state on SoC is presented. Fur-
thermore, the estimated co-state by using the formula in (3) is also added. After comparison between
the estimated co-state values and those resulting from off-line PMP, the average values of the co-state
are well approximated by using the analytical formula (3). However, in the off-line PMP results, there
are different co-state values at the same SoC. More precisely, the co-state amplitude near the end of the
driving cycles is less than the initial co-state although they have the same SoC values and fuel cell system
conditions. So far, the influence of the so-called time effect on the control variable is described. In order
to have a control mechanism considering this kind of time effect, the LSTMN method will be used and
explained in the next part.

Performance study of the LSTMN under different combinations of input variables

The training of the LSTMN requires the selection of features. The possible candidates of features include
the open-circuit voltage Voc, SoC, power demand Pload, average fuel cell power Pfc, and the derivative of
hydrogen mass flow with respective to the fuel cell power dṁH2

dPfc
as well as the time. The control variable

is the fuel cell power Pfc, which is also called the label in LSTMN. The training data sets correspond to
the driving cycle 1, and the test of the trained model is applied to driving cycle 2. In the case of training
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(a) (b)

(c)

Fig. 4: Comparison between the analytically calculated co-state values and those resulting from off-line
PMP algorithm under three different driving cycles: (a) Driving cycle 1 with average fuel cell power of
106.5 kW, (b) Driving cycle 2 with average fuel cell power of 114.1 kW, (c) Driving cycle 3 with average
fuel cell power of 78.5 kW.

with more data, the data corresponding to driving cycle 3 is also used besides the driving cycle 1. In
all experiments, the training data of the hybrid trains in summer and winter conditions are concatenated
together. Before using the LSTMN, some parameter study for choosing best inputs combination will be
implemented.

The first experiment aims to analyze which input combination performs best in predicting the label
variable under test data sets. Numerical results are presented in Table I. The rMSE stands for root Mean
Square Error in the field of machine learning, and MAE represents Mean Absolute Error. In above study

Table I: Performance study of the LSTMN under different inputs combinations.

Training inputs rMSE Training loss in MAE Test loss in MAE
(kW) (kW) (kW)

SoC + Pload 14.820 0.0094 0.0880
SoC + Pload+ Voc 14.729 0.0093 0.0878
SoC + Pload+Pfc + Voc 8.310 0.0066 0.0497
SoC + Pload+Pfc + Voc + dṁH2

dPfc
5.117 0.0062 0.0286

SoC + Pload+Pfc + Voc + dṁH2
dPfc

+ Time 5.482 0.0065 0.0302

results, some conclusion can be made: Pload is the necessary input variable, Pfc is useful to set a baseline
of season trend, and dṁH2

dPfc
has positive influence on the prediction results. The time leads to a negative

change in the trained model. As for adding the Voc, the performance is not improved significantly, as
the similar nature of SoC and Voc, whereby the open-circuit voltage strongly depends on the SoC. In the
following parts, more experiments are operated to explore their influences on the model. The numerical
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results of the comparison are listed in Table II. Through the comparison study, a pretty close influence
is generated between SoC and Voc since their nature is similarly related in batteries. Given the rMSE
results, the SoC has a slight advantage compared to Voc in all three comparison experiments.

Table II: Comparative influence study between Voc and SoC.

Training inputs rMSE Training loss in MAE Test loss in MAE
(kW) (kW) (kW)

Voc + Pload+Pfc 7.579 0.0071 0.0459
SoC + Pload+Pfc 7.009 0.0068 0.0417

Voc + Pload+Pfc + dṁH2
dPfc

4.255 0.0062 0.0227

SoC + Pload+Pfc + dṁH2
dPfc

4.175 0.0057 0.0225

Voc + Pload+Pfc + dṁH2
dPfc

+ Time 5.384 0.0066 0.0306

SoC + Pload+Pfc + dṁH2
dPfc

+ Time 4.721 0.0061 0.0259

Due to the advantage of choosing SoC over the open-circuit voltage, the standard inputs are assigned as
SoC, Pload, Pfc and dṁH2

dPfc
. The input of time is not explicitly further adopted because the performance of

the trained model without an explicit input of time is better than that with time as the input.

After choosing the input variables, the fine-tuning experiments of hyper-parameters are implemented.
This step tests if using more training data by utilizing driving cycle 3, changing the learning rate, and
adding an early-stop policy influence the training and testing results. The fine-tuning results are ex-
pressed in Table III. From the results, the change of learning rate is illustrated as a strong influence
factor, which is capable of improving the model’s performance twofold.

While monitoring the training and test loss, as shown in Fig. 5, the over-fitting phenomenon are much
more significant with more training data from driving cycle 3. Hence, the early stop policy is adopted
when involving more training data by using driving cycle 3. The computational time takes about ten
seconds to train one epoch by using a computer with 2.6 GHz 6Core Intel Core i7. Since 50 epochs are
used to train the neural network, it takes about five hundred seconds for a combination of input variables
per a setup of hyper-parameters. The low computational time results from that merely one driving cycle
is applied to train the neural network, and this driving cycle contains about 16000 sampled time points.
Furthermore, the test results of the best two models in Table III, corresponding to the last two rows, are
shown in Fig. 6, whereby negligible difference among models is observed.

Table III: Results of hyper-parameters fine tuning. Thereby, lr stands for the learning rate and more
training data comes from driving cycle 3.

Methods rMSE Training loss Test loss
(kW) in MAE (kW) in MAE (kW)

Standard inputs / lr = 0.001 4.175 0.0057 0.0225
Standard inputs / lr=0.0001 2.213 0.0075 0.0114
Standard inputs / More training data / lr=0.0001 3.607 0.0051 0.0179
Standard inputs / lr=0.0001 / early stop 2.012 0.0078 0.0097
Standard inputs / More training data / lr=0.0001 / early stop 1.718 0.0047 0.0072

In the next section, the machine learning-based strategy’s fuel economy will be validated by applying
simulation. It is worth mentioning that the trained model includes four input signals: load power, SoC,
fuel cell average power, and the derivative of the mass flow regarding the fuel cell output power. Fur-
thermore, the training data set merely uses the driving cycle 1 to keep the training effort low, and the
learning-based strategy will be tested under driving cycles 2 and 3 for different weather conditions in the
on-line simulation environment.
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(a) (b)

Fig. 5: Training loss and test loss monitoring: (a) Training process of standard inputs with learning rate
equals 0.0001 and training data from driving cycle 1, (b) Training process of standard inputs with more
training data from driving cycle 3 besides the data from driving cycle 1 at learning rate equals 0.0001.

(a) (b)

Fig. 6: Test results of the best two trained models, whereby driving cycle 2 is used for testing. In the
legend, the Real data represents the control sequences under the off-line PMP strategy, and the Model
generate is the output of the trained model. (a) The trained model with standard inputs and training data
from driving cycle 1, (b) The trained model with standard inputs with training data from driving cycles
1 and 3.

On-line simulation results with comparisons to off-line and adaptive PMP
strategies
In the on-line simulation environment, the learning-based strategy will be compared to the off-line PMP
strategy to show how close the machine learning-based strategy is to the optimal strategy. Besides that,
the learning-based strategy will be compared to the adaptive PMP-based strategy developed by authors
before, which is the most fuel-efficient strategy so far, to our knowledge. The high fuel economy and
adaptivity of the developed learning-based strategies will be emphasized through comparisons to either
the off-line or on-line strategies.

It is worth mentioning that in the on-line simulation environment, the control signal from the energy
management system, which is the fuel cell system power, suffers from a rate limit in order to reduce fuel
cell aging, which is about 20 kW/s for a system with a maximum power of 200 kW. Furthermore, due to
simplicity, this rate limit is set to be the same for increasing and decreasing fuel cell power. The charge
and discharge current of the battery system is determined by the driving cycle because the battery system
assists the train acceleration and regenerative braking. Due to the battery system’s high power dynamic
capability, there are no other rate limiters in the on-line simulation.

In Fig. 7a, the fuel cell power trajectories under the learning-based strategy are displayed, together with
the off-line PMP results. The fuel power trajectories are close to their mean values to a large degree and
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above the mean values during acceleration while below the average values in the regenerative braking
phase. Therefore, the battery system provides and absorbs peak power during acceleration and regenera-
tive braking phases, either under the machine learning-based strategy or the off-line PMP-based strategy,
as shown in Fig. 7c. As the result of the battery power trajectories, the corresponding SoC trajectories
can be found in Fig. 7b. It is worth mentioning that the change rate in the fuel cell power trajectories,
corresponding to the acceleration and regenerative braking phases, adheres to the dynamic limits of the
fuel cell power mentioned before. These acceleration and braking phases take more than one minute, and
the variation in the fuel cell power is less than 40 kW. Regarding the fuel cell trajectories, the closeness
of the trajectories to their mean values means utilizing the convexity of the hydrogen consumption curve,
which enables working points of the fuel cell system with high efficiency. The increase of fuel cell power
during acceleration and the decrease during regenerative braking help to reduce battery losses because
the batteries cover the difference between load demand and supplied fuel cell power. Thereby, an oscil-
lation of fuel cell power, to some degree, helps reduce battery current, ohmic losses, and total hydrogen
consumption. Therefore, a compromise between maintaining the fuel cell system in operational points
with high efficiency and reducing inner battery losses has to be met to reduce the total hydrogen con-
sumption. After comparing the off-line PMP strategy, which realizes the best fuel economy, it is evident
that the machine learning-based strategy can work close to the best compromise and leads to good fuel
economy. In Fig. 7b, the SoC trajectory has an end value close to its initial value, which shows that the
charge-sustaining mode is maintained for the fuel cell trains without an extra charger. Regarding hy-
drogen consumption, the learning-based strategy consumes 1.84 % more compared to the off-line PMP
strategy in summer for driving cycle 3.

(a) (b)

(c)

Fig. 7: On-line simulation results under the learning-based strategy for driving cycle 3 in summer with
the off-line optimal results as references: (a) Fuel cell power trajectories, (b) SoC trajectories, (c) Battery
power trajectories.

The validation is also performed for the winter weather conditions. Moreover, the difference between
the learning-based strategy and the off-line PMP strategy decreases in winter conditions compared to
the difference in summer because a higher average load demand power is estimated with lower relative
errors. The fuel cell power trajectories are also close to their average values, which are about 30 kW
larger than in summer, and the SoC trajectories are also similar to the cases in summer since the higher
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auxiliary consumption due to air conditioning will be covered by the fuel cell system. Regarding hydro-
gen consumption, the learning-based strategy consumes 1.58 % more than the off-line strategy in winter
for driving cycle 3.

The validation of the fuel economy of the learning-based strategy, with comparison to the off-line strate-
gies, is also done for driving cycle 2 and different weather conditions. Some related parameters to fuel
economy can be found Table IV.

Besides comparing the learning-based strategy and the off-line PMP, another comparison will be given
between the learning-based strategy and the adaptive PMP-based strategy since this work aims to develop
a strategy better than the best adaptive PMP-based strategy known so far. The comparison between them
is carried under driving cycle 3 in summer weather conditions.

(a) (b)

(c)

Fig. 8: Comparison of the learning-based strategy and the adaptive PMP-based strategy under driving
cycle 3 in summer weather conditions: (a) Fuel cell trajectories, (b) SoC, (c) Battery power trajectories.

The resulting trajectories, which make the learning-based strategy different from the adaptive PMP-based
strategy, can be found under the driving cycle 3 with a longer running time. The battery power trajecto-
ries of the learning-based strategy and the adaptive PMP-based strategy, as shown in Fig. 8c, are slightly
different. In Fig. 8a and Fig. 8b, more differences regarding the fuel cell power and SoC trajectories can
be identified. The fuel cell power under the learning-based strategy has a higher average value than that
under the adaptive PMP-based strategy in the beginning and midterm of the driving cycle, while near the
end of driving cycle 3, the fuel cell power under the learning-based strategy is less than that of the adap-
tive PMP-based strategy. In other words, under the learning-based strategy, more fuel cell power than the
estimated average power will be used at the beginning of the driving cycle and less fuel cell power than
the estimated average power used near the end of the driving cycle. This phenomenon is similar to the
time or sequence effect mentioned before, whereby in the off-line PMP, the same SoC values correspond
to different co-state values due to different time points within driving cycles. More detailed to speak, the
amplitude of the co-state at the beginning of the driving cycle is larger than that near the end of the driv-
ing cycle, even though the same SoC values exist. Due to the larger co-state amplitude at the beginning
of the driving cycle, the off-line PMP strategy outputs fuel cell power more than its average first and
decreases the power later less than its average. Therefore, it is evident that the learning-based strategy
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can consider the time or sequence effect to minimize hydrogen consumption. A simple explanation of
the benefits of considering this kind of time or sequence effect follows. Due to the difference in fuel
cell power, the SoC trajectory under the learning-based strategy lies in higher values than the adaptive
PMP-based strategy, as shown in Fig. 8b. According to the battery characteristics, a higher SoC results
in a higher open-circuit voltage and lower battery resistance. Then, for the same battery power, a lower
battery current and inner ohmic losses result. As mentioned before, the basic principle of minimizing
hydrogen consumption for fuel cell trains lies in the compromise between maintaining the fuel cell sys-
tem working at higher efficiency and reducing inner battery losses. By considering this kind of time or
sequence effect in the learning-based strategy, the battery losses will be further decreased.

The comparison between the learning-based strategy and the adaptive PMP-based strategy is also done
for driving cycle 2 and other weather conditions. The results can be found in Table IV. Summarily, the

Table IV: Comparison of the learning-based strategy and the adaptive PMP-based strategy with off-line
PMP as references.

Driving cycle 2 Driving cycle 3

Summer Winter Summer Winter

Learning-based

mH2 in g 15599 20843 87589 120379
mH2 in g under PMP 15200 20339 86007 118504
Compared to PMP 2.63 % 2.48 % 1.84 % 1.58 %

Adaptive PMP

mH2 in g 15617 20862 84954 120390
mH2 in g under PMP 15195 20349 82847 118486
Compared to PMP 2.78 % 2.52 % 2.54 % 1.61 %

most important results of the supervised-learning-based strategy, with comparisons to the off-line PMP
and the on-line adaptive PMP-based strategies, are included in Table IV. The learning-based strategy has
a higher fuel economy than the adaptive PMP-based strategy in all driving conditions, independent of the
length of driving cycles and weather conditions. The reason is that the learning-based strategy considers
the time or sequence effect, besides all the merits included in the adaptive PMP-based strategy.

Conclusions
In this work, a learning-based strategy is developed using LSTMN, a variant of the recurrent neural
network, to distribute power between fuel cells and batteries for fuel cell trains. The inputs of the neutral
network are chosen based on inspiration from the adaptive PMP-based strategy. Due to their physical
relation to the output fuel cell power, much less data is required to train the learning-based strategy than
those in the literature about learning-based strategies. Based on simulation results, the learning-based
strategy outperforms the best adaptive PMP strategy, which is the best strategy to our knowledge, in all
driving conditions. In the case with the most significant difference between the learning-based and the
adaptive PMP-based strategy, more consumption of 1.84 % compared to the off-line PMP results for
the learning-based strategy for a typical driving cycle of regional trains in summer, while 2.54 % more
consumption is required by the adaptive PMP strategy than the off-line PMP strategy for the same driving
cycle.
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Pischinger, S. and Hameyer, K., 2021. Offline optimal energy management strategies considering high dy-
namics in batteries and constraints on fuel cell system power rate: From analytical derivation to validation
on test bench. Applied Energy, 282, p.116152
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[8] Li, W., Cui, H., Nemeth, T., Jansen, J., Ünlübayir, C., Wei, Z., Zhang, L., Wang, Z., Ruan, J., Dai, H. and
Wei, X., 2021. Deep reinforcement learning-based energy management of hybrid battery systems in electric
vehicles. Journal of Energy Storage, 36, p.102355

[9] Zhou, D., Ravey, A., Al-Durra, A. and Gao, F., 2017. A comparative study of extremum seeking methods
applied to online energy management strategy of fuel cell hybrid electric vehicles. Energy conversion and
management, 151, pp.778-790

[10] Tan, H., Zhang, H., Peng, J., Jiang, Z. and Wu, Y., 2019. Energy management of hybrid electric bus based
on deep reinforcement learning in continuous state and action space. Energy Conversion and Management,
195, pp.548-560

[11] Han, L., Jiao, X. and Zhang, Z., 2020. Recurrent neural network-based adaptive energy management control
strategy of plug-in hybrid electric vehicles considering battery aging. Energies, 13(1), p.202

[12] Munoz, P.M., Correa, G., Gaudiano, M.E. and Fernández, D., 2017. Energy management control design for
fuel cell hybrid electric vehicles using neural networks. International Journal of Hydrogen Energy, 42(48),
pp.28932-28944

[13] Kandidayeni, M., Trovo, J.P., Soleymani, M. and Boulon, L., 2022. Towards health-aware energy manage-
ment strategies in fuel cell hybrid electric vehicles: A review. International Journal of Hydrogen Energy.

[14] Manoharan, Y., Hosseini, S.E., Butler, B., Alzhahrani, H., Senior, B.T.F., Ashuri, T. and Krohn, J., 2019.
Hydrogen fuel cell vehicles; current status and future prospect. Applied Sciences, 9(11), p.2296.

[15] Ahmadi, S., Bathaee, S.M.T. and Hosseinpour, A.H., 2018. Improving fuel economy and performance of a
fuel-cell hybrid electric vehicle (fuel-cell, battery, and ultra-capacitor) using optimized energy management
strategy. Energy Conversion and Management, 160, pp.74-84.

[16] Li, H., Ravey, A., NDiaye, A. and Djerdir, A., 2019. Online adaptive equivalent consumption minimization
strategy for fuel cell hybrid electric vehicle considering power sources degradation. Energy Conversion and
Management, 192, pp.133-149.

[17] Musardo, C., Rizzoni, G., Guezennec, Y. and Staccia, B., 2005. A-ECMS: An adaptive algorithm for hybrid
electric vehicle energy management. European journal of control, 11(4-5), pp.509-524.

Adatpive Pontryagin's Minimum Principle-Inspired Supervised-Learning-based
Energy Management for Hybrid Trains Powered by Fuel Cells and Batteries

PENG Hujun

EPE'22 ECCE Europe  ISBN: 978-9-0758-1539-9 – IEEE: CFP22850-ART P.11
Assigned jointly to the European Power Electronics and Drives Association & the Institute of Electrical and Electronics Engineers (IEEE)

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on November 29,2022 at 14:22:22 UTC from IEEE Xplore.  Restrictions apply. 


