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Consideration of Rotational Motion in the Proper Generalized
Decomposition by a Sliding Interface Technique

Fabian Müller and Kay Hameyer
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The simulation of rotating electrical machines, particularly in the development process, involves many parameters, such as the
current excitation, permanent magnet materials, and the relative rotor position. To reduce the computational effort related to a
large number of degrees of freedom (DOFs), the proper generalized decomposition (PGD) can be employed. Although the mentioned
reduction technique is able to efficiently cope with parameter variations, it is limited to conformal meshes. However, the consideration
of moving parts in the model for the simulation of rotating electrical machines is a necessity to characterize the machine’s behavior.
For this purpose, the sliding interface technique, based on Lagrange multipliers (LMs) can be utilized. In this contribution, the
sliding interface technique, which imposes no restrictions on the finite element discretization of the interface between stator and
rotor, is combined with the PGD to lift the restriction of the latter to conformal meshes while keeping the symmetry and positive
definiteness of the system without the creation of additional elements. This approach enables the parametric simulation of rotating
electrical machines by the PGD.

Index Terms— Lagrange multiplier (LM), model order reduction (MOR), motion, proper generalized decomposition (PGD), sliding
interfaces.

I. INTRODUCTION

IN THE simulation of electrical machines, a restriction to
conformally meshed geometries represents an undesired

condition because in most rotating electrical machines motion
has to be considered. While, in standard finite element sim-
ulation, this limitation is coped with by techniques such as
overlapping elements [1], the moving-band method [2], the
mortar element method [3], [4], or sliding interfaces [5],
it is still challenging if the proper generalized decomposi-
tion (PGD) is used. The PGD, as an a priori model order
reduction (MOR) technique, can show large reduction of
computational effort [6] and is already applied to a variety of
electromagnetic field problems [6]–[9]. The PGD is applicable
to separable problems, but the consideration of motion states
a non-separable problem. This non-separability is associated
with modification in the system due to motion-related changes
of the connection between degrees of freedom (DOFs) on the
interface. In [7], an approach based on the overlapping element
method is presented to consider motion in the PGD. The
overlapping element method is based on creating additional
elements in the overlapping region without introducing new
DOF [1]. In this contribution, an approach considering a
motion by a non-conforming sliding interface is employed
without the necessity to construct additional elements for each
angular position. The Lagrange multipliers (LMs) utilized in
this technique can be efficiently used to couple the static and
moving domains [10], [11] and keep the positive symmetric
semi-definite property of the system. This combination of the
sliding interface technique and the PGD rotating electrical
machines can be studied.
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II. FINITE ELEMENT FORMULATION

To solve electromagnetic fields in electrical machines,
neglecting eddy currents, the static magnetic vector potential
formulation is widely applied. A geometry shall be decom-
posed into two domains, the slave domain �S and the mas-
ter domain �M, and both domains are not connected. The
boundaries of the domains are denoted as �S, �M and �D =
∂�M \ �M ∪ ∂�S \ �S. While �S and �M form the interface
between �S and �M, �D holds unary boundary conditions.
In addition, a mapping between �S and �M is given by
p : �M → �s, and the master potential is then mapped to
the slave curvature by AM ◦ p. Introducing these boundaries
into the vector potential formulation results in the following
equation [5]:∑

k=M,S

∫
�k

ν∇ × A∇ × α + νBPM∇ × α + Jαd�k

+
∫

�S

(
λS − HS × nS

)
αSd�S

−
∫

�M

(
λ ◦ p−1 + HM × nM)

αMd�M

+
∫

�S
μ

(
AS − AM ◦ p

)
d�S = 0. (1)

A is the magnetic vector potential, and α denotes the nodal
form function, employed as test and weighting function
accordingly to the Galerkins method. J is the current, and
BPM is the excitation given by permanent magnets. λ denotes
the LM, a penalty term to ensure continuity over the interface,
and μ denotes the form function associated with the LM
on the interface. The three curvature integrals in (1) ensure
the continuity of the magnetic field strength and the vector
potential over the interface. In [5] and [10], a more in-depth
explanation is given. To keep the positive semi-definite prop-
erty of conformal problems, it is possible to transform the
saddle point problem resulting from (1) into a symmetric form.
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Fig. 1. First-order nodal form functions.

For this purpose, the LM and the related DOF are eliminated
by imposing additional boundary constraints. The constraints
are computed by

AS =
(∫

�S
μαSd�S

)−1 ∫
�S

μαM ◦ pd�SAM. (2)

To efficiently compute the additional boundary constraints, it is
necessary to employ biorthogonal form functions for μ, which
simplifies the computation of the inverse in (2) [5], [11]∫

�S
μiα

S
j d�S = δi j

∫
�S

αS
j d�S, with δi j =

{
1, if i = j

0, if i �= j .

(3)

The nodal form functions and continuous biorthogonal form
functions for a first-order line element are given in Fig. 1.

III. PGD WITH MOTION

The PGD separates the unknown potential into a sum over
products of functions, which only depends on one parameter,
such as R(x) for the space and Ti(θ) for the motion (4). The
test function α = ∂ A, due to the Galerkins method, is derived
by (5)

A(x, θ, p1, . . . , pn)

=
m∑

i=1

Ri (x) · Ti(θ) · F1,i (p1) · · · Fn,i (pn) (4)

α = R�
m(x) · Tm(θ) · F1,m(p1) · · · Fn(pn) + · · ·

+ Rm(x) · Tm(θ) · F1,m(p1) · · · F �
n(pn). (5)

The parameter θ denotes the rotor angle, and p1 to pn can be
chosen, for example, as the permanent magnet remanence, the
current amplitude, or other problem-related parameters. In the
first step, (4) and (5) are introduced into (1), and consecutively,
the formulation is rearranged according to the parameter
integration. Employing an alternative direction scheme (ADS)
enables to sequentially solve for the different parameters [9].
The subscript depicts the mode number in the following
explanations, and to simplify the equations, the PGD will only
contain the angle function F(θ) and the spatial component
R, while the permanent magnet remanence is kept constant.
The current is a function of θ as well. Nevertheless, the
procedure is similar if more parameters are introduced. Non-
linearities are considered by employing a fixed-point reluc-
tivity νfp and a magnetization term Hfp in combination with
the discrete empirical interpolation method (DEIM) [9], [12].
This approach is mainly employed in separable problems [8],
[9], which is not given if motion shall be included. The

relative position of the domains affects the connection of the
DOF on the interface (2) and, therefore, changes the system
matrix. Due to this reason, the problem is subdivided into
a decomposable part and a non-decomposable part similar
to [7]. In the following, the enriched model is referred to as
reduced-order model (ROM).

A. Space Computation
The evaluation of the spatial component introduces an

additional splitting of the stationary and rotating domains into
a part �k,int and �k,air . The first one consists of all elements
not connected to the interface and has an underlying piecewise
affine decomposition (PAD), while the latter one consists of
elements in the airgap, which are connected to either �m or �s ,
which has no underlying PAD [5], [7]. The domain �k,int can
be treated as in [6], [8], and [9]. By assuming that the modes
up to m−1 are known, then the system of the separable regions
is given by the following equation:∑
k=M,S

∫
�k,int

νfp∇ × Rm∇ × R�
md�k,int

∫



(Tm(θ))2dθ

=
∑

k=M,S

∫
�k,int

JxR
�
md�k,int

∫



Jθ Tm(θ)dθ

+
∑

k=M,S

∫
�k,int

νBPM,x∇ × R�
md�k,int

∫



BPM,θ Tm(θ)dθ

−
m−1∑
i=1

νfp∇ × Ri∇ × R�
md�k,int

∫



Ti(θ)Tm(θ)dθ

−
∑

k=M,S

∫



Tm(θ)

∫
�k,int

(∇ × Hfp(A(x, θ))R�
md�k,intdθ

)
.

(6)

The airgap region �air needs to consider the connection
between the slave and master domains, including a projection
operator p, which depends on the relative rotor position,
and due to this reason, the submatrix unavoidably has to be
rebuilt for each angle θl . A weighted sum is used to build
an approximation of the matrix in �air over all positions,
including the integration over all parameters except for θ ,
which is then added to the matrix of �k,int [7]. Furthermore,
to completely extract the information content of previous
modes from the equation system, the non-separable part has
to be considered on the right-hand side. For this purpose, the
matrix in �air is built and multiplied with the space modes
up to m − 1. The resulting system of equations (7) can be
solved by standard Krylov-subspace algorithms, such as the
conjugate gradient method( ∑

k=m,s

Mk,int +
∑

l

Mair(θl)

)
Rm

= B −
m−1∑
i=1

∑
l

Mair(θl)Ti(θl)Tm(θl)Ri dθ. (7)

B. Angular Computation
To evaluate the angular mode, the spatial component Rm is

assumed to be known from the previous computation (6), (7);
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Fig. 2. Studied permanent magnet synchronous machine. (a) Problem
geometries. (b) Non-conform mesh in the airgap.

hence, it is possible to evaluate the integrals in �k , leading to
a linear equation to be solved for all rotational positions. The
term HNL belongs to the non-linearity, while HLin extracts the
information of the modes up to m − 1. To evaluate the curl
of the vector potential, it is necessary to apply the projection
operator on beforehand, denoted by the function F , which
maps the potential of the master nodes back onto the slave
curvature. Several nodes on the master interface are connected
to one slave node by a factor κ j(θ)

Amove · T (θ) + L(θ)

= Cmove · J (θ) + Dmove − Ld(θ) − HLin(θ) − HNL(θ)

(8)

Amove =
∑

k=M,S

∫
�k,int

∇ × Rk
m∇ × Rk

md�k,int (9)

Cmove =
∑

k=M,S

∫
�k,int

JxR
k
md�k,int (10)

Dmove =
∑

k=M,S

∫
�k,int

νBPM∇ × Rk
md�k (11)

L(θ) =
∫

�air

ν∇ × F(Rm)∇ × F(Rm)Tm(θ) (12)

Ld(θ) =
m−1∑
i=1

∫
�air

ν∇ × F
(
Rk

i

)∇ × F
(
Rk

m

)
Ti (θ) (13)

F(R) =
{

Rk, if node is not on slave interface∑
j κ j(θ)Rk

j , if node is on slave interface

(14)

HLin(θ) =
∑

k=M,S

∫
�k,int

∇ × Rk
i ∇ × Rk

md�k,int Ti(θ) (15)

HNL(θ) =
∑

k=M,S

∫
�k,int

∇×(Hfp(Am(x, θ))∇×Rmd�k . (16)

IV. APPLICATION TO AN EXAMPLE MACHINE

In the following, the derived formulation is applied to
a synchronous machine with surface-mounted magnets. The
three-phase machine given in Fig. 2(a) has two pole pairs and
a length of 12.5 cm. The permanent magnet remanence is set
to 1.2 T. In Fig. 2(b), the airgap is depicted for a relative rotor
angle of 22.5◦. The absolute error tolerance for the ROM is
set to 2×10−3. The angular step is varied between 0◦ and 90◦
in 25 steps with a step width of 3.75◦. The PGD is compared to
reference solutions obtained on the same mesh with a standard
magnetic vector potential solver.

Fig. 3. Flux density for a rotor position of 22.5◦. (a) Continuity of the
magnetic vector potential lines at the interface. (b) Bref − BPGD. (c) Tangential
airgap flux density. (d) Radial airgap flux density.

A. Airgap Fluxdensity
First, the continuity over the sliding interface is studied.

In Fig. 3(a), the magnetic flux density and the equipotential
lines of the magnetic potential are depicted for a rotational
angle of 22.5◦. It underlines that the ROM reproduces a phys-
ical solution. The difference of the reference’s and ROM’s flux
densities in Fig. 3(b) shows the local error, which is mainly
located in the rotor iron between the magnets and in the stator
at the transition between tooth and yoke. Furthermore, to com-
pute the torque of the machine or the forces acting on the
ferromagnetic structure, the airgap flux density is derived and
set in contrast to the reference solution. In Fig. 3(c) and (d),
the tangential and radial flux densities in the middle airgap
are shown. The results have very small deviations compared
to the reference, which highlights the accuracy of the ROM.

B. Torque
In Section IV-A, the airgap flux density was studied in detail

for one angular step, and in the following, the torque of the
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Fig. 4. Torque of the machine at Idq = [0, −5] A and BPM = 1.2 T.

TABLE I

COMPUTATIONAL EFFORT OF DIFFERENT OPERATIONS

machine is depicted in Fig. 4. The overall torque characteristic
is accurately approximated. Only in a few steps, small errors
are identifiable.

C. Computational Effort
The combination of the PGD with the sliding interface tech-

nique pursues two objectives; on the one hand, the restriction
to conformal meshes should be lifted; on the other hand,
the computational effort compared to standard finite element
computations should be reduced. The results regarding the
continuity and reasonability of the approach are shown in
Sections IV-A and IV-B. The computational effort of the
reference computation and the worst case approximation of
the enrichment process of the PGD are given in Table I. The
parameter Nx denotes the DOF of the finite element (FE)
model and Nc denotes the number of parameter combinations
to be studied, excluding the number of angular steps, which is
given by Nθ . NNL is the number of non-linear iterations, which
is not equal for the reference and the PGD. While the reference
computation has to solve a non-linear finite element model for
each step and each parameter combination, the PGD enrich-
ment itself consists of an FE problem for computing the space
mode and linear equations to compute the parameter modes.
In the parameter computation, integrations over the mesh have
to be performed to calculate the coefficients. The integration
itself scales with N2

x and is conducted m times to compute
a new mode m. Furthermore, if non-linear materials have to
be considered, an additional load vector Hfp has to be built.
Comparing the number of non-linear evaluations shows that
the reference has a lower computational effort for non-linear
simulations if NNL is smaller than NNL,PGD ·m. By employing
the DEIM, which only utilizes a small subset of elements and
a projection operator, this effort is crucially reduced in the
PGD to allow a faster evaluation of the non-linear term [9].
The number of modes to achieve a prescribed accuracy and
the number of non-linear iterations to achieve a new mode are
not known a priori and are problem-dependent. The effort of
the online stage, which evaluates the magnetic vector potential

A (4), is compared to the enrichment process almost negligible
because it holds the sum over vectors multiplied by a scalar
value, which scales with an effort of O(Nx ).

V. CONCLUSION

In this contribution, the PGD is combined with the sliding
interface technique to include rotational motion and lift the
limitation to conformal meshes without creating additional
elements. By employing biorthogonal form functions, the
resulting system of equations is symmetric positive semidefi-
nite. The results highlight that the ROM can be used to study
a rotating electrical machine with technical relevant accuracy,
and a physical continuity at the interface is given. It can be
summarized that the presented method is a reasonable tool;
however, the reduction in terms of computational effort is
strongly related to the application and the involved number of
parameter combinations. The findings show that the PGD is
extendable to non-separable problems by including additional
curvature integrals, and it is conceivable that other methods to
model motion are compatible with the PGD as well.
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