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Abstract—TIt is essential to understand the structural dynamic
behavior of electrical machines to predict their acoustic and
vibrational behavior. Since soft magnetic cores of electrical
machines consist of laminated steel sheets, they exhibit
anisotropic mechanical properties. Stacking technology, which is
used to manufacture soft magnetic cores, has a strong influence
on the material properties. In this paper the stacking technology
of welding and bonding with bake varnish are compared.
Eigenfrequencies, mode shapes and modal damping ratios are
extracted from measurements and used in a finite element
simulation model. The approach and achieved accuracy of the
simulated frequency response functions are discussed.

Index Terms—Acoustics, Modal Analysis, Electric Machines,
Magnetic Cores, Damping, Vibrations

I. INTRODUCTION

To predict the acoustic behavior of an electric machine or
drive train a simulation of the structural dynamic behavior
is necessary. To prevent losses due to eddy currents the
soft magnetic cores of electrical machines are constructed
from laminated metal sheets. The mainly used construction
technologies are connection by welding, punch-bundling
with interlocks or bonded via bake-hardening varnish during
production. In mass production the first two methods are
favored due to long processing times and high cost of
the baking process. However welding and interlocking only
connect the layers at certain points. This potentially allows
micro-slip inbetween layers involving friction and variations
of the surface contact area while vibrating [7].

The modeling of structural dynamics is state of the art
performed by using methods of modal analysis; a detailed
description can be found in EWINS [3] and theoretical
and practical short studies in the extensive article series in
AVITABILE [5]. Basic principle of the modal analysis is the
transformation of the system of coupled equations of motion
into the modal space to a system of uncoupled single degree
of freedom (DOF) equations.

The simulation of modal characteristics with numerical
approaches requires the discretization of the geometry. Due
to the high amount of layers in soft magnetic cores, small
dimensions of sheet metal thickness (in the magnitude of
0.2mm) and varnish thickness (in the magnitude of 10 um)
it is not suitable to discretize each layer, hence this approach
leads to equation systems with too many degrees of freedom to
be practically solvable. Therefore homogenization techniques
are used which can be found in the literature [8][10][1][9][12].
These approaches reduce the multi-material composite to a

homogenized equivalent material with appropriate anisotropic
properties. The anisotropic properties are accounted for by
the material model. The geometric discretization can thus
be coarser which decreases the computational effort needed
to solve the equation system. However, the homogenization
approach assumes a fully bonded material, which is not the
case with welded or punch-bundled iron cores. As a result the
homogenization approach has to be tested.

In this paper, the differences between bonded and welded
iron cores are analyzed, at the example of a stator iron core
which is depicted in fig. 1. It is shown that modal analysis
is feasible for this problem and leads to good measurement
results which demonstrate the effect of different stacking
technologies on the structural dynamic behavior. Extracting
modal parameters and especially reliable damping coefficients
from a frequency response function can be troublesome,
therefore various methods have been developed [2]. Four
of these methods are chosen, briefly described and their
feasibility on this problem and results are compared. The
obtained parameters are then used in a simulation with a
homogenized material model. The approach and its results
are compared to the measurements and discussed.

II. MEASUREMENT

The structural dynamic characteristics of the iron cores are
determined using the impact hammer method [3]. An impact
hammer with a force sensor on its tip is used to excite the
stator cores. The response is measured with vibration sensors
on the surface of the stator. The stator itself is suspended in
a frame which minimizes the interaction between the frame
and the stator, approximating a free-free boundary condition.
Receptances are calculated from the force spectrum F' and
the acceleration spectrum A.

Fig. 1. The analyzed stator core.
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Fig. 2. Measured mode shapes of the bonded stator.
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To obtain the receptances, from which the modeshapes can
be extracted, the roving sensor method was used as shown in
fig. 3. While the excitation remains at the same location the
acceleration sensor is moved through 30 equidistant positions
on three rings on the stator. By this multiple frequency
response functions of the system matrix are measured.

A. Mode Shape and Eigenfrequency

Initially both stators, the welded and the bonded one, are
characterized with the impact hammer method. Exemplary
receptances calculated from the measurements can be seen
in fig. 5. To locate the eigenfrequencies, the Mode Indicator
Function (MIF) is applied [5]. The MIF takes advantage of
the fact that the real part of the receptance crosses the x-axis
while it passes a resonance. A resonance is therefore indicated
by a drop in the MIF.

| Re(H)|?
|H|?
At the discovered eigenfrequencies the modeshapes are
extracted, which are shown in fig. 2 and fig. 4. Modes with
pure bending deformation are present in both stators at similar
frequencies. Peaks that correspond to pure bending modes are
as pronounced as in the receptance of the bonded stator, which
indicates that there is no significant difference in the modal

MIF = 2

Fig. 3. Excitation and measurement positions on stator.
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Fig. 4. Measured mode shapes of the welded stator.

damping ratios. The stators differ significantly at modes with
shear deformation. The mode of the bonded stator with pure
shear deformation at 3781 Hz is also present in the welded
stator, but at a significantly lower frequency 424 Hz. Peaks
that correspond to modes with shear deformation are less
pronounced than in the bonded stator. This indicates high
modal damping ratios.

B. Methods for Extraction of Damping Coefficients

Several methods to extract modal damping parameters from
measurements exist [2]. They can be divided into Single
Degree Of Freedom methods (SDOF) and Multi Degree
Of Freedom methods (MDOF). While SDOF methods take
into account only one DOF at a time for the extraction of
modal parameters, MDOF methods consider multiple DOF
simultaneously which allows for better parameter estimation.
To achieve reliable damping coefficients in case of the
expected highly damped welded core, two simpler methods
(3dB method, Circle Fit method) are compared with two
more sophisticated methods (Rational Fractional Polynomial
method, Least Squares Rational Fit method [6]).

1) 3dB Method: The 3dB method is a simple SDOF
method to estimate the modal damping ratio. It depends on
methods, which can extract the Eigenfrequencies like the MIF.
The 3dB method uses the 3dB falloff of a peak to estimate
its corresponding modal damping ratio. [3]

2) Circle Fit Method: The Circle Fit method fits a circle
to one peak of the FRF and calculates the corresponding
damping ratio from characteristic parameters of the fitted
circle. As with the 3dB method only one DOF is treated at a
time. Therefore the Circle-Fit method is a SDOF method. [3]
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Fig. 5. Measured receptances of the bonded and the welded stator.
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Fig. 6. Damping coefficients of the bonded stator with dominant deformation.

3) Rational Fraction Polynomial Method: The Rational
Fraction Polynomial (RFP) method fits a curve to the
measured receptance. The coefficients of the fit are the modal
parameters. The method considers multiple DOFs at once and
belongs to the MDOF methods. [2].

4) Least Squares Rational Fit Method: The Least Squares
Rational Fit (LSRF) method uses a Sanathanan and
Koerner iteration [6] to estimate initial parameters for an
instrumental-variable iteration. Sanathanan Koerner iterations
are based on a rational polynomial which is fitted to
the measurement data by a least squares method. Due
to better convergence behavior of the instrumental-variable
iteration these parameters are used as starting parameters
for an instrumental-variable iteration wich extracts the modal
parameters. [6].

C. Comparison of Methods and Results

The applicability of the methods described above is tested
by analyzing the receptance of a bonded stator package. The
receptance can be seen in fig. 5 and the estimated modal
damping ratios are given in fig. 7. All tested methods agree
well on most modal damping ratios except for the shear mode
at 3720 Hz. Neither the 3dB nor the circle fit method are able
to calculate the modal damping ratio in this case, because the
eigenfrequencies of the modes are too close together.

Both MDOF methods take a frequency range and an initial
guess of the expected eigenfrequencies as input. The LSRF
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Fig. 7. Comparison of the damping estimation methods for the bonded Stator.
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Fig. 8. Damping coefficients of the welded stator with dominant deformation.

method turned out to be more robust than the RFP method
when varying these boundary conditions. Therefore the LSRF
method is used for parameter extraction in this paper.

D. Damping Comparison for Welded and Bonded Stator

In fig. 6 the modal damping ratios of the bonded stator
are shown. The stator is a compact machine element whose
layers are in full contact due to the adhesive properties of the
bake hardening varnish. A noticeable pattern emerges when
comparing the modeshapes with their corresponding modal
damping ratios. Modeshapes that exhibit shear deformation
show significantly higher damping ratios than modes without
shear deformation. The pure shear mode at 3781 Hz exhibits
the highest damping ratio in the observed frequency range.
This measurement demonstrates the anisotropic damping
behavior of the bonded stator, where shear deformation
correlates to higher damping ratios. The bake hardening
varnish layer has a higher material damping than steel [ 1].
Shear deformation leads to a higher participation of the
varnish in the deformation and thus to higher modal damping
ratios.

The layers of the welded stator are only connected via small
cross sections at the welding seam. Unlike in the bonded
stator no adhesive force acts between the layers, but only
normal contact pressure and friction. The friction mechanism
is connected to high energy dissipation, which is demonstrated
by the damping ratio estimations for the welded stator in
fig. 8. All modes with shear deformation exhibit modal
damping ratios which are up to two orders of magnitude
higher than those exhibited by similar modes in the bonded
stator. Modes without shear deformation experience almost no
relative motion between the layers so the friction mechanism
does only have a small effect on the modal damping ratios.
The damping ratios of these modes are comparable to those
in the bonded stator.

III. SIMULATION

The stator geometry is modeled as a compact object.
The anisotropic material properties which are introduced by
the stacking methods are described by the homogenization
approach in [12]. A modal analysis is conducted with this
model in ANSYS™ and a subsequent harmonic analysis is
used to determine the receptance.



A. Homogenization

Bonded Welded
E, 186820 186,820 N/mm?
E, 65,822 65,822 N/mm?
Gp 71,851 71,851  N/mm?
G.p 24,689 240  N/mm?
v, 0.3 0.3
Vap 0.11 0.11
TABLE I

IDENTIFIED HOMOGENIZED MATERIAL PROPERTIES.

The homogenization approach given in [12] was used to
determine the anisotropic material properties of the bonded
and the welded stator. As a result the material properties given
in the table above were used to define orthotropic material
models in ANSYS. In contrast to the bonded stator the layers
of the welded stator are only connected to each other via the
small cross sections of the welding seams. An equivalent shear
modulus was calculated using formula 3, using the relation
between the crosssection of the welding seam Ay, and the
bonded contact area Apongeq. All other material properties are
left unchanged.

Aseam
Gz@welded = Gzp,bonded * A (3)
bonded

B. Simulated Eigenfrequencies and Mode Shapes

The simulated eigenfrequencies of the bonded stator match
the eigenfrequencies extracted from the measurement as
can be seen in fig. 10. The MAC Matrix shows, that
the simulated modeshapes correlate well with the ones
extracted from measurements. The model is able to predict
eigenfrequencies and modeshapes of the welded stator as
well. But due to the low equivalent shear modulus a high
density of eigenfrequencies is obtained by the simulation in
the frequency range up to 5000 Hz. 139 Modes are predicted
by the simulation. Most of these modes do not exhibit peaks
in the measured receptance due to their high modal damping
ratio. The mode at 424 Hz could be measured and predicted
by the simulation.
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Fig. 9. Modal assurance criterion of measurement versus simulation for the
bonded stator.

5000 +

4000 -
3000
2000

1000 -

FEigenfrequencies Measurement in Hz

0 1 1 1 1 Il
0 1000 2000 3000 4000 5000

Eigenfrequencies FEM in Hz

Fig. 10. Comparison of the measured and simulated eigenfrequencies for the
bonded stator.
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Fig. 11. Comparison of the measured and simulated eigenfrequencies for the
welded stator.

The MAC matrix demonstrates the good match
between simulated mode shapes and those extracted
from measurements for the bonded stator. Only the modes
at 3781 Hz and 4528 Hz are attributed with a low MAC
value. In the case of the welded stator the modes with pure
bending deformation also agree well with the simulation
results. Modes with shear deformation on the other hand
show lower MAC values when compared to the simulation. A
visual comparison between the simulated and the measured
modeshapes with shear deformation shows a good agreement.
The reduced MAC values stem from deformations in the
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Fig. 12. Modal assurance criterion of measurement versus simulation for the
welded stator.
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Fig. 13. Comparison of measurement and simulation for an exemplary

frequency response function of the bonded stator.

measured mode shapes.

C. Simulated Frequency Response

The Harmonic analysis was conducted by exciting and
measuring at the same locations on the FE model as in
the exemplary measurements shown in fig. 5. But instead
of an impact a sinusoidal frequency is used as excitation
signal. The frequency is varied from O0Hz to 5000 Hz and
the amplitude is chosen to be 1N so that the resulting FRF is
the receptance. The modal damping ratios are taken from the
measurements. Modal damping ratios can not be obtained for
the majority of the simulated modes from the welded stator
measurements. Since the simulation relies on those damping
ratios the harmonic analysis is only conducted for the bonded
stator.

The simulated receptance of the bonded stator fits very well
to the measured receptance as fig.13 shows. For simulation
of the welded stator, the damping coefficients of the highly
damped modes have to be known. Future work could deal
with alternative measurement techniques to extract modal
damping ratios from the welded stator to allow simulation of
the receptance. The strain energy method could also be used
to determine modal damping ratios as shown in SCHWARZER

[1].

IV. CONCLUSION

This paper demonstrates the influence of stacking
technologies on the structural dynamic behavior of iron cores
of electrical machines. The correlation between mode shapes
and their respective damping ratios is shown. The main
differences between the bonded and the welded stator from
a structural dynamic perspective are the lower shear stiffness
and higher damping ratios in the welded stator.

A comparison between damping extraction methods
demonstrates that SDOF methods are not able to calculate
damping ratios of modes with similar eigenfrequencies. Both
MDOF methods are able to estimate damping ratios of these
modes. The results of the LSRF method are more stable
than those of the RFP method when varying the frequency
range and the expected eigenfrequencies. Therefore the LSRF
method is chosen in this paper to extract modal parameters

from the measurements.

The modal analysis of the stators shows that modes with
pure bending deformation are very similar in eigenfrequency,
mode shape and damping ratio in both stators. A variation
of the stacking technology has only a small effect on these
modes. The reduced shear stiffness in the welded stator
however leads to significantly lower eigenfrequencies in pure
shear modes. The friction between the steel sheets in the
welded stator results in damping ratios an order of magnitude
larger when compared to pure bending modes. The simulation
shows a high density of modes with shear deformation which
can not be extracted from the measurements. Receptances
extracted from the measurements show now a significant peak
for most of these modes, which is also indicative of their high
modal damping ratio. The modes with shear deformation that
can be extracted from the measurements of the welded stator
match the modes predicted by the simulation.

The behavior of the bonded stator can be reproduced
very well with a FE simulation, as the comparison between
simulated and measured receptance shows. The simulation of
the welded stator shows a high density of modes with shear
deformation due to the low shear stiffness. Four modes with
shear deformation can be extracted from the measurements
which fit the predictions made by the simulation. The majority
of the simulated modes with shear deformation can not be
extracted from the measurements, most probably due to their
high damping ratios and low axial spatial resolution of the
measurements.
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