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a b s t r a c t

A co-optimization of the total running time, timetables, driving strategies and energy management is
implemented for the world’s first commercial fuel cell train Coradia iLint in this contribution. Thereby,
the forward dynamic programming algorithm is applied to co-optimize the driving strategies between
two stations, the running time distribution in various railway sections and the entire journey’s running
time. Through parallelization of the algorithm, the computational time is reduced. For energy man-
agement, a rule-based strategy utilizing the convexity of the fuel cell system’s consumption curve is
introduced. The co-optimization of train control and energy management is realized using a sequential
algorithm to achieve decoupling. As a result, the number of state variables while using dynamic pro-
gramming for the co-optimization is maintained at two. Through the co-optimization of the running
time, timetables and driving strategies, the optimal running time is determined, which is about 8 min
less than the existing time table while consumes 1.8 % less energy. Furthermore, through the co-
optimization of the speed profiles and the energy management, evident energy consumption de-
creases if a short running time is required. Thereby, the hydrogen consumption decreases by 3.8 % after
the co-optimization compared to that before co-optimization under the minimal drive time of 4615 s for
a total distance of 82.6 km.

© 2021 Published by Elsevier B.V.
1. Introduction

1.1. Background and motivation

About 24 % of direct carbon dioxide emissions from fuel com-
bustion comes from transportation [1]. At a time when global
emissions require to decrease, transport carbon dioxide emissions
are on the increase [2]. Road vehicles make nearly three-quarters of
carbon dioxide emissions in the transport area. Thereby, rail be-
longs to the most energy-efficient transport forms, which uses 3 %
of the total energy to afford 7 % of freight transport and 9 % of
passenger mobility [3]. Therefore, the emissions are expected to be
reduced by promoting lower emission transport forms like trains
al Ministry of Transport and
umbers of 03B10502B and

(H. Peng).
and using renewable energy.
Until 2020, around 40 % of the railway network in Germany is

served by combustion engines-driven trains. The target of German
federal government is to reach 70 % electrification of the railway
network by 2025 [4]. Nevertheless, it is not economically profitable
to electrify routes with low train frequency because of the required
vast capital investment and the significant amount of infrastruc-
ture. Thus, the fuel cell hybrid railway vehicle is a promising
medium-term alternative to the combustion-engine driven trains
and has begun its commercial operation in multiple countries. In
2018, the world’s first commercial fuel cell passenger train started
service in Germany [5]. In 2017, CRRC Tangshan uncovered the first
commercial hydrogen-powered tram globally and finished its first
experiment run in China [6]. In America, the first hydrogen-
powered train was reserved for operation in California in
November 2019 [7].

The hydrogen-powered hybrid trains are equipped with two
energy sources: fuel cells as high-capacity active controllable po-
wer sources and high voltage batteries as a high-power
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rechargeable energy storage system. Due to high voltage battery,
kinetic energy can be largely recycled into batteries rather than
grids during regenerative braking. Compared to the fuel cell hybrid
trains, the combustion-engine driven trains do not recycle kinetic
energy. For the electrical trains supplied by overline catenaries,
they can not store electrical energy onboard and recycle the me-
chanical energy to use for other trains in the acceleration phase at
the same time. As learned from literature, a co-optimization of
timetables and train driving strategies in each section of the whole
journey should be carried out to minimize the total energy con-
sumption [8]. No literature has been found to handle the optimi-
zation problem of timetables and driving strategies for fuel cell
hybrid trains since the fuel cell hybrid train came to commercial
service in 2018. Furthermore, in the literature related to traditional
railway operation, the whole journey’s total running time is fixed
before the co-optimization. However, the presumed fixed running
time is not optimized, especially when the ancillary consumption,
which makes a large portion of the total consumption, is almost
linear to the running time. Therefore, the total running time should
also be optimized to reduce the total energy consumption. Besides
that, due to the hybrid configuration of the fuel cell hybrid trains,
energy management, which distributes load power between fuel
cell systems and battery systems, should also be considered
because energy management directly determines fuel cells’ work-
ing points or hydrogen consumption. Therefore, for the fuel cell
hybrid trains, energy consumption can be reduced through a co-
optimization of the total running time, timetables, driving strate-
gies and energy management, which researchers have not studied
thus far.

1.2. Literature review

Both train timetabling and control influence energy consump-
tion. Therefore, in the following, the literature study about train
operation contains two parts including the energy-efficient train
control and the energy-efficient train timetabling. A detailed re-
view paper can be found in Refs. [9,10]. After introducing train
operation, a brief outline of the most advantageous energy man-
agement strategies for hydrogen-powered hybrid vehicles will be
given.

1.2.1. Energy-efficient train operation
The energy-efficient train control is understood as optimizing

the speed profile between two stations to reduce energy con-
sumption under a fixed running time. Various methods or algo-
rithms are utilized to solve the energy-efficient train control
problem, including Pontryagin’s Maximum Principle (PMP), pseu-
dospectral methods, heuristic algorithms and dynamic program-
ming. Mathematically, the energy-efficient train control belongs to
the optimal control problem, which suffers from various state and
control constraints such as maximum speed limits and traction
power limits. So far, PMP application in energy-efficient train
control has been comprehensively studied [10]. According to the
PMP theory, the optimal energy-efficient train control for a flat
track without considering regenerative braking contains four
driving regimes including maximum traction, coasting, cruising
and maximum braking [11]. For the electrical trains supplied by the
grid, regenerative braking is available. Therefore, the optimal con-
trol of the train running on a flat track under the constant speed
constraint includes seven driving patterns. They are the maximum
traction, cruising with part traction, cruising with part regenerative
braking, cruising with full regenerative braking and partial me-
chanical braking, coasting, full regenerative braking, full regener-
ative braking plus mechanical braking [12]. Using the PMP
conclusions, the optimal control problem is simplified to find the
2

optimal order of the driving patterns mentioned above and deter-
mine the shift point from one pattern to another [10]. The
uniqueness of the optimal control solution is also proved in
Ref. [13]. However, in the real application, varying speed limits and
gradients should be considered. For the piecewise constant speed
limits and gradients, in Ref. [14], the total distance between two
stations is divided into segments of the same constant gradients
and speed limits. Then, in each segment, the gradient and speed
limit remains constant, and the conclusions of the optimal control
consisting of certain driving regimes can be used. Thereby, an al-
gorithm consisting of two loops with the outer loops searching the
cruising speed for each section and the inner loop to determine the
optimal switching points within each section is developed. In
Ref. [15], the track is divided into subsections with constant
gradient and speed limits, and in each subsection, an operation
sequence of maximum traction, cruising, coasting and maximum
braking is assumed. In order to make the calculation more conve-
nient, the constraints related to engines are simplified to have a
piecewise affine function or constant value. Each driving regime’s
duration in each subsection is to be searched using nonlinear
programming. In the steep gradient case, in Ref. [16], it is proved
that the accelerating phase and the coasting phase interrupt the
cruising phase for upcoming steep uphill and downhill parts,
separately. It is worth mentioning that the PMP-based algorithm is
computationally efficient and it can be used for real-time
application.

If the gradient varies continuously or the number of gradient
values is too large, the methods based on PMP conclusions can not
handle the optimal control problem efficiently. Therefore, the
pseudospectral method is utilized to convert the original optimal
control problem into a nonlinear programming problem using
discretization on the first-order differential equations in the
optimal control, which corresponding solvers can solve [17]. The
detailed introduction of using the pseudospectral method to
determine the optimal train control is described in Ref. [18].
Through the pseudospectral method, various complicated limits
related to machines, gradients, speed limits and arrival time win-
dow constraints in certain stations can be handled. In Ref. [19], the
optimal train control under consideration of regenerative braking,
whose maximal force is a nonlinear function of the speed, is
implemented using the pseudospectral method. Thereby, in com-
parison to pure mechanical braking, combined mechanical and
electrical braking results in higher fuel efficiency. In Ref. [18], the
target time window constraint at each station is considered to
investigate how much energy can be saved if a time window
instead of a specific time point at each stop is required. However,
there is a compromise between the computational time and the
solution quality using the pseudospectral method, whereby the
discretization degree plays a crucial role. Generally, the pseudo-
spectral method is an offline algorithm. In Ref. [17], PMP is used to
confirm and advance the pseudospectral method’s results to derive
the optimal train control strategy. If the constraints and the resis-
tance force can be linearized, the algorithm of mixed-integer linear
programming can be used, which can be applied online due to its
high computational efficiencies [20,21]. However, this assumption
is not the case in reality.

For the heuristic algorithm, sub-optimal solutions are expected.
Certain patterns, including various parameters to be optimized, are
used to drive the train. Various evolutionary algorithms can find
these parameters. In Ref. [22], the whole distance is divided into
segments with constant gradient and speed limits. Four driving
regimes containing maximal acceleration, cruising, coasting and
maximal braking are assumed within each segment. An evolu-
tionary algorithm is used to search the corresponding running time
of different driving regimes within each segment. In Ref. [23], the
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velocity values at preset positions are optimized to minimize en-
ergy consumption, which can be used as a driver assisting system.
The ant colony optimization as well as genetic algorithm are used
separately to optimize the speed profile between two stations. As a
comparison, offline dynamic programming is used. Dynamic pro-
gramming performs best, while genetic algorithm and ant colony
optimization do not outperform each other dominantly. Since the
heuristic algorithm can not determine the optimal solution, its
study does not lie in the research field’s central focus.

Besides the PMP algorithm, for the optimal solution of the
energy-efficient train control, dynamic programming can also solve
the optimal control problem. One of the greatest advantages of
dynamic programming compared to PMP lies in the fact that all
complicated constraints related to machines, timetables, gradients
and speed limits can be handled easily [24]. In Ref. [25], dynamic
programming and optimal control theory are reviewed, which
optimize running profiles between two stations and control battery
charging simultaneously to reduce electricity consumption for a
train with onboard batteries. Thereby, a backward dynamic pro-
gramming algorithm is used, the same as found in almost all
literature related to optimizing speed profiles by using dynamic
programming. However, the terminal boundary condition at the
end station is problematic to handle. Thereby, there are errors in
the velocity and driven distance at the end station. In order to
improve the computational efficiency, in Ref. [26], a novel dynamic
programming algorithm based on an event-based discretization
instead of an even discretization in the time and space domain is
implemented to determine the optimal velocity profile between
two stations. The search space is reduced so that an online imple-
mentation of the algorithm is possible. So far, the dynamic pro-
gramming algorithm has been comprehensively studied by various
researchers to optimize the speed profile of trains driven by
combustion-engines or pure electrical motors. However, the fuel
cell hybrid train, whose control optimization requires a co-
optimization of energy management and driving strategies, has
not been studied using dynamic programming. More importantly,
as mentioned before, integration of the total running time opti-
mization is also desired. Since backward dynamic programming is
used, the optimal driving profile corresponding to different running
time values requires multiple dynamic programming runs, which is
not time efficient. Furthermore, it is worth mentioning that dy-
namic programming requires a computational load enormously
larger than PMP [27]. Therefore, dynamic programming is not the
research focus to optimize the driving strategies between two
stations, as it is not online implementable now and limited by the
existing computational resources. However, as communication and
computation technology develops, it is possible to execute the
computation outside the train.

Besides the energy-efficient train control between two stations,
the optimization of train timetables plays another important role in
reducing the whole journey’s energy consumption. The optimiza-
tion of timetables contains two aspects: distribution of running
time for the single-train operations and synchronization of accel-
eration and regenerative braking for the multiple-train operation
[8]. As the fuel cell hybrid trains have their own large batteries and
no overlines exist, the synchronization problem is not faced and
will not be discussed in the paper. For the running time distribution
of a single train operation, in Ref. [28], dynamic programming is
used to reschedule the high-speed railway traffic to reduce the total
delay time. In Ref. [29], by modifying train running times in
different sections for regional trains with backward dynamic pro-
gramming, the chance of getting connections to other public buses
at metro stations is increased. It is worth mentioning that the
timetables or the distribution of the total running time in each
railway section determine the realizable minimum of energy
3

consumption. Therefore, a co-optimization of timetables and
driving strategies is required and lies in the research focus [30]. In
Ref. [31], a two-level optimization algorithm is used to co-optimize
the timetables and the driving strategies. The evolutionary algo-
rithm is used to distribute the total fixed journey time in different
sections on the first level. On the second level, the PMP-based al-
gorithm, as described before, is used to optimize the driving stra-
tegies between two stations for the assigned running time. In
Ref. [32], the first level uses the simulated annealing algorithm, and
the second level uses dynamic programming to determine the
energy-efficient train control under the assigned running time.
Besides the algorithms based on evolutionary algorithms, the
pseudospectral method, which was introduced before, can opti-
mize the timetable and the driving cycles simultaneously. In
Ref. [33], the timetable with a given fixed total running time is
optimized under consideration of flexible departure and arrival
time window constraints at each substation in between. The
problem is rewritten into multi-phase optimal control and resolved
using the pseudospectral method, which considers conditions of
varying gradients and speed limits. In Ref. [34], the method based
on PMP and the pseudospectral algorithms are introduced and
compared to optimize traveling time supplements for a journey
with various stops and a fixed total running time. Thereby, piece-
wise gradient and velocity limits are considered.

1.2.2. Energy management
Besides timetable and driving strategies optimization, the po-

wer distribution for the hydrogen-powered hybrid railway vehicles
strongly influences the fuel economy. Two kinds of energy man-
agement strategies are often found in literature reviews about
hybrid vehicles, namely optimization-based and rule-based power
distribution methods [35]. In Ref. [36], various power distribution
strategies are studied for hybrid systems consisting of battery and
capacitor considering battery aging and energy efficiency. In
Ref. [37], the power distribution strategies are analyzed for fuel cell
hybrid vehicles assisted with ultracapacitors, which however does
not include optimization-based strategies. In Ref. [38], the Markov
prediction method is adopted to realize velocity prediction for a
short period and the optimal power distribution under the pre-
diction will be calculated by using dynamic programming. How-
ever, coupling between energy management and the optimizing
driving cycle is not mentioned. Summarily, the most desired char-
acteristics of energy management strategies include optimality,
healthy operation, adaptivity, causality and scalability. The opti-
mality refers to the fuel economy, which should maintain the fuel
cell systems operating efficiently for fuel cell railway vehicles.
Under healthy operation, the fuel cell systems should work stable
without high dynamic power change. Adaptivity is required for
online strategies in real-time applications. The causality assumes
that less future information is required for the implementation of
online strategies. The most challenging point, namely the scal-
ability, describes that the online strategies developed for one
application can be transferred to other areas without difficulties.
Few papers about online strategies for hybrid vehicles include all
the mentioned characteristics. Last year, we developed model-
based strategies to solve the challenges mentioned above,
including a rule-based strategy and an adaptive Pontryagin’s Min-
imum Principle-based strategy (APMP). In Ref. [39], the rule-based
strategy, which utilizes the convexity of fuel cells’ consumption
curve, is introduced. Compared to offline reference strategies, a
good fuel economy and a healthy fuel cell system’s operation are
realized. In Ref. [40], a physical formula is derived to estimate the
costate defined in the optimal control. Thereby, a scalable and ca-
sual APMP strategy is introduced, which has an extremely near-
optimal fuel economy compared to offline results. In Refs. [41,42],
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the rule-based and the APMP-based strategies are validated by
using test bench measurement, respectively. Since the fuel cell
power under the APMP strategy is more dynamic than the rule-
based strategy, which shortens fuel cells’ lifetime. Therefore, the
rule-based strategy is applied in the co-optimization in this
contribution.
1.2.3. Motivation
Overall, the co-optimization of running time, timetables, driving

strategies and energy management, which the fuel cell hybrid
trains face, has not been studied. Furthermore, various complicated
constraints related to traction and regenerative braking, whose
maximal force is nonlinear to motor speed and time window at
each station, under consideration of continuous varying speed
limits and gradients, should be considered.
1.3. Main work

Due to the complexity of the problem, the forward dynamic
programming is used to co-optimize the total running time, time-
tables and driving strategies. Then, an adaptive rule-based strategy
is used for the power distribution strategy due to its high adap-
tivity, scalability and fuel efficiency. The major contributions are
summarized in the following:

C Two-layer dynamic programming is adopted to co-optimize
driving strategies between stops, timetables and the total
running time to reduce energy consumption. The first layer
of dynamic programming is two-dimensional, which uses
velocity, and distance as the state variables, time as the in-
dependent variable. Thereby, it optimizes driving strategies
between every two nearby stops under various driving times.
The second layer of dynamic programming is one-
dimensional and helps minimize energy consumption by
adjusting timetables and the total running time.

C The co-optimization of driving strategies, timetables, and the
total running time is further developed considering the on-
line rule-based power distributionmethod for the hydrogen-
powered hybrid trains.
1.4. Outline of the paper

In section 2, the train modeling is introduced. In section 3, the
two-dimensional forward dynamic programming is adopted to
solve the optimal train control and timetable problem. In section 4,
a quantitative formula that utilizes the convexity of the fuel cell
system’s consumption curve is derived to define the rule, and the
rule-based strategy is introduced. In section 5, the co-optimization
between the speed profile and the rule-based strategy is intro-
duced, with their mutual influence on each other considered. In
section 6, the conclusions and outlooks will be summarized.
2. Power train modeling

Fig. 1 shows the configuration of the power train that simulates
the power flow of a half train. The fuel cell system and the battery
are connected parallel to the DC bus. In this work, only the train
velocity and the battery SoC are dynamically calculated. For other
components, lookup tables are applied tomodel their power losses.
In Ref. [40], the modelling of each part in the driveline is described
in detail.
4

2.1. Environment model

As a driving cycle, the train speed trajectory between Bre-
merv€orde and Cuxhaven with 14 stations and a total distance of
82.6 km is generated. It is a part of Alstom Coradia iLint1, which is
the route of the world’s first passenger train powered by hydrogen
fuel cell. The time table of this route is listed in Table 1. The cor-
responding slope and elevation information are shown in Fig. 2.
2.2. Longitudinal dynamic

The longitudinal dynamics of the train are shown in Fig. 3 and
can be described as:

Fa ¼ Ftrac � Froll � Faero � Fgrade � Fb; (1)

where Fa is the acceleration force, Ftrac the traction force, Froll the
rolling resistance, Fgrade the uphill resistance, Faero the aerodynamic
drag and Fb the mechanical braking force. It can be rewritten as
follows:

m
dv
dt

¼ Ftrac � crollmgcosð4Þ � 0:5rCdAfv
2 �mgsinð4Þ � Fb;

(2)

wherem and v are the equivalent mass and velocity of the train,
croll is the rolling resistance coefficient, 4 describes the road slope
angle, g refers to the earth gravitational acceleration, r to the air
density, Cd to the drag coefficient and Af to the frontal area of the
train. The efficiency of the DC/DC converter and the DC/AC inverter
are assumed to be constant values, which are 0.98 and 0.94,
respectively. The values of these parameters of a half train are listed
in Table 2.
2.3. Electrical machine

Three high-speed asynchronous machines, which are modeled
with lookup tables to calculate the machine power losses, support
the train traction. The lookup table of power loss in the machines is
presented together with the efficiency map in Fig. 4. All parameters
corresponding to the electrical machines and the gear system are
summarized in Table 3.
2.4. Fuel cell

The rated power of the used Proton Exchange Membrane (PEM)
fuel cell system is 200 kW. The entire system has its own controller
to adjust its output power. This paper focuses on the co-
optimization of train control, timetabling, and energy manage-
ment to reduce hydrogen consumption rather than the effects of
control on fuel cells’ aging. Therefore, the characteristic consump-
tion curve is adopted to model fuel cell systems. Fig. 5a shows the
experimental measurement of the consumption curve. The
approximated curve and its convexity are displayed in Fig. 5b.

The mathematical expression of the convexity of the con-
sumption curve is described as follows:

_mH2
ða , Pfc; 1 þð1�aÞ , Pfc; 2Þ<a, _mH2

ðPfc; 1Þ
þ ð1�aÞ, _mH2

ðPfc; 2Þ; (3)

where _mH2
stands for the mass flow that is dependent on the fuel

cell output power.



Fig. 1. Configuration of the driveline.

Table 1
Time table of the driving cycle.

Arrival station Latest arrival time Stop time Departure time

Bremerv€orde e e 0 s
Oerel 420 s 30 s 450 s
Heinschenwalde 660 s 60 s 720 s
Frelsdorf 960 s 30 s 990 s
Geestenseth 1200 s 60 s 1260 s
Wehdel 1440 s 60 s 1500 s
Sellstedt 1800 s 60 s 1860 s
Bremerhaven-Wulsdorf 2280 s 30 s 2310 s
Bremerhaven-Hbf 2520 s 960 s 3480 s
Bremerhaven-Lehe 3720 s 60 s 3780 s
Wremen 4440 s 30 s 4470 s
Dorum(Weserm) 4800 s 300 s 5100 s
Nordholz 5700 s 60 s 5760 s
Cuxhaven 6540 s e e
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2.5. Lithium-ion battery system

Themodel of the lithium-ion battery cell is parameterized based
onmeasurement data. The battery system has a nominal capacity of
207 Ah and a nominal voltage of 850 V. The battery pack’s tem-
perature is assumed to be controlled near 25 �C, and thermal
modeling is not taken into account. The technical specifications of
the battery are listed in Table 4. The dependence of the battery
internal resistance R0 and the open-circuit voltage on the state of
charge is presented in Fig. 6.
Fig. 2. Slope and elevation information of the ra
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3. Co-optimization of running time, timetables, and driving
strategies without considering energy management

In this section, the train speed trajectory optimization is
formulated as an optimal control problem and the speed profile is
generated through two-dimensional dynamic programming with
forward iteration.
3.1. Generation of optimal speed profiles dependent on variable
running time between two stops

Under the two-dimensional framework, the speed and the po-
sition of the fuel cell hybrid railway vehicle are chosen to be the
state variables:

x ¼ ½x1; x2� ¼ ½v; s�: (4)

The discretization of the state variables are changeable and defined
unevenly. At the beginning of a section between two stations, the
discretization degree of position is 0.1 m. It is gradually increased to
2 m after 40 m. Similarly, the discretization degree is reduced from
2 m to 0.1 m in the last 40 m of the railway section. The reason for
the uneven discretization is that the train drives with a relatively
low speed when it leaves from or arrives at a station. A higher
discretization degree at the beginning and the end ensures a pre-
cise calculation and a lower degree in between reduces the
computational effort. Generally, the discretization degree of ve-
locity is set to be 0.05 m/s. If the section is longer than 10 km, the
ilway route from Bremerv€orde to Cuxhaven.



Fig. 3. Longitudinal dynamics of the train.

Table 2
The longitudinal dynamics parameters and environmental conditions.

Parameters Values

mtrain 60000 kg (with passengers included)
croll 0.0015
g 9.81 m/s2

r 1.4 kg/m3

Cd 0.15
Af 10 m2

hDC/DC 0.98
hDC/AC 0.94

Table 3
Parameters of the electrical machines and the gear system.

Parameters Values

number of electrical motors 3
rated power of each machine 220 kW
rated rotational speed 3200 rpm
maximal torque 901 Nm
gear efficiency 0.98
gear ratio 10
wheel radius 0.425 m
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discretization degree is changed to 0.1 m/s to reduce the compu-
tational demands. The traction or break torque is defined as the
control variable:

u ¼ Mel: (5)

The discretization degree of the torque is 5 Nm. The drive time is
discretized with 1 s as the discretization degree. Then, the state
equation of the velocity according to the forward dynamic pro-
gramming is:

x1½k�1� ¼ x1½k� � a½k�; (6)

where a[k] is the acceleration, which is calculated based on the
longitudinal dynamic, as explained in section 2.2. The dynamic of
the position is calculated as follows:

x2½k�1� ¼ x2½k� � Dt,
x1½k� þ x1½k� 1�

2
: (7)

Based on a given railway route, the boundary conditions are
defined:
Fig. 4. Features of the e
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x1½0� ¼ 0; x1½N� ¼ 0; x2½0� ¼ 0; x2½N� ¼ send � sstart; (8)

where send � sstart is the distance between the two adjacent railway
stations and the index of the final time stage N.

As the speed limit along the railway section is not to be excee-
ded and the railway route is given, the state constraints are
determined:

0⩽x1½k�⩽vmaxðx2½k�Þ;
sstart⩽x2½k�⩽send; (9)

where vmax is the speed limit dependent on the position.
The torque of the electric machines has upper and lower limits.

When the train accelerates, the required traction force is provided
by the electric machines as motors. While the train decelerates, the
electric machines work as generators to provide regenerative
braking. Besides, if a strong deceleration is required, a mechanical
braking can provide additional braking force. Therefore, the control
constraint is determined:

Mel; minðx1½k�Þ �Mbrake; max⩽u½k�⩽Mel; maxðx1½k�Þ; (10)

where Mel, min and Mel, max are the minimal and maximal torque of
electric machines, which are dependent on motor speed, and
Mbrake, max the maximal mechanical brake torque. It is worth
lectrical machine.



Fig. 5. Characteristic consumption curves of the fuel cell system and its convexity: (a) Experimental measurement, (b) Approximated curve.

Table 4
Parameters of the battery system.

Terms Values

Rated voltage 835 V
Rated capacity 207 Ah
Number of cells in series 370
Advised SoC range 0.15 ~0.95
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mentioning that mechanical braking is utilized only when the
required deceleration surpasses the regenerative braking capacity.

The cost function is defined as follows:

J ¼ hðx1½0�; x2½0�Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
initialization

þ Dt,
XN
k¼1

Pðx1½k�;u½k�Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

energy consumption

;
(11)

where h(x1[0], x2[0]) represents the initialization based on the
speed and position of the train, and Dt,Pðx1½k�;u½k�Þ is the energy
cost in each time interval, which can be presented as a function of
speed and torque. The total energy consumption equals the inte-
gration of power along the time.

The states dependent cost of the first time stage is initialized at
the beginning. In this case, the train starts with a speed of zero from
the starting station with a position of zero: x1[0] ¼ 0, x2[0] ¼ 0.
Thus, for all other initial states which are greater than zero, an
invalid value is assigned to the corresponding cost so that the tra-
jectories, beginning with these states, will not be selected. The
initial cost at the first time stage is defined as follows:

hðx1½0�; x2½0�Þ ¼
�
0 x1½0�⩽0; x2½0�⩽0;
∞ otherwise: (12)
Fig. 6. Features o
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The resulting optimal velocity profiles corresponding to various
driving times between two stops always begin with zero speed at
the start position by using the initialization. As forwarding dynamic
programming is used, the boundary condition at the endpoint of
railway sections is automatically satisfied without velocity and
distance errors.

The transition cost in Eq. (11) can be rewritten and expanded
like the following:

Dt,Pðx1½k�;u½k�Þ ¼ Dt,uemðx1½k�Þ,u½k�
1000,hD=A,hD=D

þDt,Plossðx1½k�;u½k�Þ
hD=A,hD=D

þ Dt,Paux
hD=D

;

(13)

where uem(x1[k]) is the angular velocity of the electric machine in
rad/s, hD/A is the efficiency of the DC/AC inverter, hD/D describes the
efficiency of the DC/DC converter, Ploss(x1[k], u[k]) is the power loss
of the electric machine and Paux indicates the auxiliary power. The
values of hD/A and hD/D are chosen as 0.94 and 0.98, respectively. The
auxiliary power is modeled stationary with 45 kW. The angular
velocity is calculated as follows:

uemðx1½k�Þ ¼
x1½k�,G
Rwheels

; (14)

where G is the gear ratio between the axis of electric machines and
the wheels, and Rwheels describes the radius of wheels.

The optimal control sequence that tries to minimize the total
energy consumption along the railway section between two sta-
tions is calculated by a forward iteration as follows:

C The states dependent cost of the first time stage is initialized
with Eq. (12).
f the battery.
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C In the iterative calculation for k¼ 1 to N, at each time stage k:
The states of the previous stage x1[k � 1] and x2[k � 1] are
calculated with Eq. (6) and Eq. (7), respectively. The cost-to-
go matrix of time stage k � 1 is determined with interpola-
tion and the transition cost matrix is calculated with Eq. (13).
By summing up both matrices, the cost-to-go matrix of time
stage k is obtained.

C The optimal control variable of time stage k is determined.
C After the iteration to stage N is finished, the optimal control

sequence is generated by using a trace-back method.

In this algorithm, a two-dimensional cost-to-go matrix at each
time stage k saves the total energy consumption corresponding to
all states at that time. In the matrix, each row corresponds to a train
speed and each column corresponds to a train position. The
element at position [x1 ¼ 0, x2 ¼ send � sstart] represents the total
energy consumption when the train stops at its destination. If a
value exists in this element of the cost-to-gomatrix for a given time
stage k, it indicates that the train is able to reach its destination at
time k. Then, this cost-to-go value describes the total energy con-
sumption of the hydrogen-powered train to reach its destination at
this time stage. Thus, through the forward dynamic programming,
the minimal energy consumption corresponding to the different
drive time between two stations is determined, as well as the
corresponding optimal control sequence corresponding to different
drive time.

3.2. Results

For the given driving cycle, the speed profile between each two
stations is analyzed. Fig. 7 shows the energy consumption corre-
sponding to different drive time of several sections as examples.

The points of minimal and maximal drive time are marked with
red circles. The speed profile with theminimal energy consumption
refers to the lowest point of the curve, highlighted with a red cross.
It is observed that the longest drive time might not minimize the
energy consumption. Thus, it is crucial to choose an optimal drive
time for each section. The shortest, optimal and longest drive time
and their corresponding energy consumption of all driving sections
are listed in Table 5.

As the speed profile of each section with the optimal drive time
is generated, it can be integrated to determine the driven distance.
By comparing the calculated distance and the real distance, a de-
viation can be observed, as listed in Table 6. Due to the high dis-
cretization degree, the difference in distance is extremely small and
can be neglected. Additionally, the calculation time and utilized
memory can be found in Table 6, too. Besides, in the generated
speed profiles, the initial and final speed always equals zero, this is
realized by the tricky initialization of the cost function and the
backward trace back.

3.3. Co-optimization of the total running time, the timetable and
the driving strategies

In the previous part, the optimal speed profile between two
stops is determined corresponding to different admissible drive
time. Notably, the drive time distribution among different railway
sections also influences the energy consumption for the entire
driving cycle. Therefore, the energy consumption can be decreased
further by optimizing the drive time distribution.

Thus, the optimization of drive time distribution is formulated
as an optimal control problem. Here, one-dimensional dynamic
programming is adopted. The discretized stages are the stops on
the route.

The state variable is the arrival time at each station:
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x½k� ¼ Tarrival½k�; (15)

where Tarrival[k] is the arrival time at the k-th stop.
The control variable is the drive time between two adjacent

stations:

u½k� ¼ Tdrive½k�; (16)

where Tdrive[k] is the drive time between the k-th station and the
previous station.

The dynamic of states indicates that the arrival time at the
previous station k � 1 is related to the arrival time at the current
station and the drive time from the previous station to current
station.

x½k�1� ¼ x½k� � u½k�: (17)

The state variable shall not exceed the regulated latest arrival
time Tarrival[k] at each station according to the timetable of the
railway route.

0⩽x½k�⩽Tarrival½k�: (18)

The control variable is limited by the shortest possible drive
time Tdrive, min[k] and the maximal drive time Tdrive, max[k] of the k-
th railway section.

Tdrive; min½k�⩽u½k�⩽Tdrive; max½k�: (19)

The shortest possible drive time is calculated according to speed
limit and corresponding acceleration limit, and the longest possible
drive time is defined by the timetable. Notably, the control variable,
namely the drive time between two adjacent stations, is not con-
stant but varies at each railway section.

The cost function calculates the total energy consumption for
the entire railway route with multiple sections. For a driving cycle
with L railway sections, the entire energy cost J is described as:

J ¼
XL
k¼1

Eðu½k�Þ
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

energy consumption

;
(20)

where E(u[k]) represents the minimal energy consumption
corresponding to different drive times between two stations.

The initial state is defined as x[0] ¼ 0, which means the initial
state of all possible trajectories equals zero. The trajectories with
non-zero initial state are assigned with invalid value, so that they
will not be selected, as shown in Fig. 8. A forward iteration is
applied to obtain the optimal drive time distribution. When the L-
th stage is finished, a trace-back is required to get the optimal
control trajectory, namely the optimal drive time of each railway
section. At the end, the speed trajectories corresponding to the
optimal drive time of different railway sections are connected
together, with the stop time at each station added in between. The
optimal speed profile for the entire railway route among multiple
stations is thus obtained.
3.4. Results

For the railway route from Bremerv€orde to Cuxhaven with 14
stations, theminimal possible drive time is 4615 s, and themaximal
allowed drive time is 6540 s. The maximal drive time is chosen to
be the total drive time of the timetable. Each value between
maximal andminimal drive time is possible, and the corresponding
energy consumption is shown in Fig. 9. In the same manner as in



Fig. 7. Energy consumption corresponding to each drive time of several sections: (a) Section 1, (b) Section 4, (c) Section 7, (d) Section 10, (e) Section 12, (f) Section 13.

Table 5
Different drive time and the corresponding energy consumption.

Section Shortest drive time Longest drive time Optimal drive time

1 256 s : 64762 kJ 422 s : 47127 kJ 400 s : 47024 kJ
2 150 s : 28272 kJ 212 s : 17032 kJ 212 s : 17032 kJ
3 181 s : 27556 kJ 242 s : 14821 kJ 242 s : 14821 kJ
4 114 s : 19611 kJ 212 s : 11018 kJ 184 s : 10757 kJ
5 149 s : 28657 kJ 182 s : 19396 kJ 182 s : 19396 kJ
6 202 s : 43444 kJ 302 s : 28252 kJ 302 s : 28252 kJ
7 236 s : 52082 kJ 422 s : 34441 kJ 383 s : 34162 kJ
8 133 s : 26497 kJ 212 s : 16795 kJ 212 s : 16795 kJ
9 146 s : 31482 kJ 242 s : 20132 kJ 235 s : 20116 kJ
10 332 s : 71402 kJ 662 s : 51966 kJ 531 s : 50130 kJ
11 207 s : 44413 kJ 332 s : 28724 kJ 332 s : 28724 kJ
12 316 s : 74360 kJ 602 s : 53138 kJ 510 s : 52072 kJ
13 352 s : 63319 kJ 782 s : 45062 kJ 568 s : 41103 kJ

Table 6
Distance deviation and calculation demands of each driving sectionwith the optimal
drive time.

Section Real distance Cal. distance Difference Cal. time RAM memory

1 7842 m 7842.35 m 0.35 m 1h49min 61.43 GB
2 3737 m 3737.35 m 0.35 m 30min 24.47 GB
3 4987 m 4987.36 m 0.36 m 39min 34.41 GB
4 2489 m 2490.75 m 1.75 m 15min 15.01 GB
5 3710 m 3710.75 m 0.75 m 29min 24.22 GB
6 5789 m 5789.51 m 0.51 m 1h03min 41.59 GB
7 7300 m 7300.75 m 0.75 m 1h53min 55.58 GB
8 3090 m 3090.32 m 0.32 m 20min 19.22 GB
9 3668 m 3668.83 m 0.83 m 27min 23.85 GB
10 11128 m 11128.42 m 0.42 m 1h20min 49.5 GB
11 5997 m 5997.42 m 0.42 m 55min 43.42 GB
12 10757 m 10757.34 m 0.34 m 1h31min 46.96 GB
13 12133 m 12133.40 m 0.40 m 1h41min 55.66 GB
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the previous part, the minimal and maximal drive time points and
the optimal drive time are highlighted with circles and a cross
symbol. The drive time corresponding to minimal energy con-
sumption is 6045 s, which is about 8 min shorter than the 6540 s
drive time of the timetable. Their corresponding energy con-
sumption is listed in Table 7, with the optimal driving cycle 1.8 %
less than the existing time tables. The generated optimal speed
9

profile with a total drive time of 6045 s is presented in Fig. 10. It is
worth noting that the energy curve rises slightly after the time
point corresponding to the minimal energy consumption, because
the energy consumed by auxiliaries increases linearly when the
drive time prolongs and becomes a non-negligible part of the total
energy consumption. As a result of the high discretization degree,



Fig. 8. Transition pattern of the state matrix.

Fig. 9. Energy consumption corresponding to each total drive time.

Table 7
Results of the total running time optimization.

Shortest total running time 4615 s : 544624 kJ
Longest total running time 6540 s : 387520 kJ
Optimal total running time 6045 s : 380424 kJ
Real distance 82627 m
Calculated distance 82633.97 m
Difference in distance 6.97 m
Total calculation time 13h28 m
Utilized memory 64.31 GB

Fig. 10. Optimal speed profile for Alstom Coradia iLint route from Bremerv€orde to
Cuxhaven.
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the calculated distance’s total deviation is only 6.97m. Additionally,
the total calculation time and memory utilization can be found in
Table 7.
4. Rule-based power distribution strategy

When discussing the real-time applications of energy manage-
ment strategies for a train, the computational load must be taken
into account. The rule-based strategies are suitable for the online-
application and easy to implement due to the low computational
burden and robustness. Those advantages allow them to be broadly
applied in commercial hybrid vehicles. In this section, a rule-based
power distribution strategy is introduced, and the main drawbacks
of the rule-based strategies such as restricted optimality and
adaptivity are avoided by developing a quantitative formula that
emphasizes the specific consumption curve’s convexity.
4.1. Principals of the rule-based power distribution method

In the previous section, the fuel cell system’s specific con-
sumption curve is displayed. According to its convexity, the fuel
efficiency of concentrating the fuel cell power near its global
average value is better than distributing the operating points.
Additionally, the charge-sustaining condition of the battery is to be
fulfilled, which means the total load energy should be provided by
the fuel cells as follows:

ðT
t0

PfcðtÞ dt ¼
ðT
t0

ðPloadðtÞþ Pbat; lossðtÞÞ dt; (21)

where T is the total drive time, Pfc the fuel cell output power, Pload
the load power and Pbat, loss the battery loss power. Besides, the
principle of load follower is also implemented in the strategy.
When the SoC of battery lies in a middle range, the fuel cell output
power equals the global mean value of the load power. When the
SoC is low, the fuel cell output power will be adjusted to be (1 þ a)
of the average value. On the contrary, the fuel cell output power is
decreased by a factor b when the SoC is high. In this contribution,
the factor a and b are set to be 0.33 and 0.4, respectively. Its
mechanism is displayed in Fig. 11. The estimation method of the
global mean load power and other details of the rule-based strategy
can be found in Ref. [39]. It is worth noting that the estimated
average load power is updated when the rail vehicles leave the
stations in between. Besides, the effectiveness of this strategy is
validated by experiments on a testbench with hardware-in-the-
loop [41].
Fig. 11. Mechanism of the rule-based strategy.
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4.2. Simulation results

Analog to the last section, the iLint railway route with 14 stops is
chosen as the test route, having a total distance of 82.6 km. The
optimal speed trajectory generated by dynamic programming is the
input of the online simulation model.

The power distribution of the simulation results under the rule-
based strategy is displayed in Fig. 12. The fuel cell output power is
controlled to equal the mean value of the load power history. The
rest of the load power, which has high fluctuation, is supplied by
the battery. Fig. 13 shows the SoC trajectories as well as the fuel cell
system power. The end status of SoC lies at 0.5001, which is almost
identical with the initial value 0.5000. The simulated hydrogen
consumption is 17676 g for the whole train on the given route in
summer.

To evaluate the rule-based power distribution method, its result
is compared with the result of a PMP-based offline strategy [41].
Hereinafter, the PMP-based offline strategy is referred to as the
reference strategy. As a global strategy, the reference strategy re-
quires information about the entire driving cycle in advance, and
can therefore find the global optimum of a given problem. Fig. 14
shows the fuel cell system output power and the SoC trajectories
of these two strategies.

The hydrogen consumption in summer calculated by the refer-
ence strategy comprises 17656 g, which is 20 g less than the result
of the rule-based strategy. Thus, the rule-based strategy is proven
to achieve excellent fuel economy with only 0.11 % more con-
sumption compared to the reference strategy, in terms of Alstom
iLint route in summer. Detailed results of both strategies are listed
in Table 8. Besides, the fuel cell power under the rule-based strategy
remains constant between every two stations, which also helps to
prolong the lifetime of the fuel cell system.

5. Co-optimization of driving cycles and energy management
strategies

As introduced in section 3, the speed profile of a given railway
route is generated based on the terrain information, the timetable,
and the power limits of energy sources, without considering the
energy management strategy. Then in section 4, the established
velocity profile is taken as prior knowledge for determining power
distribution between fuel cells and batteries. Notably, the results
from the energy management strategy can also contribute to
improving the accuracy of the speed profile by serving as inputs for
dynamic programming. Thereby, in the second implementation of
dynamic programming, the current limits of batteries are consid-
ered instead of the power limits, which improve the accuracy of the
renewed speed profile. Therefore, a co-optimization of speed
Fig. 12. Power distribution results of online simulation under the rule-based strategy.
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profile and energy management helps to take advantage of fuel cell
hybrid configuration fully. In this part, the sequential optimization
approach is applied to implement the co-optimization.

5.1. Introduction of the sequential optimization approaches

Sequential optimization approaches are adopted in this work to
maintain the computational load of co-optimization acceptable. In
the speed profile optimization, speed and location are defined as
two state variables to formulate the optimal control problem. In
energymanagement strategy optimization, the SoC is chosen as the
state variable in most literature relating to dynamic programming.
Thus, if the co-optimization is implemented using parallel ap-
proaches, the number of state variables increases from two to three.
A huge amount of calculation is inevitable considering the dis-
cretization degree in velocity, position, SoC, and time.

With sequential optimization approaches, the first version of
the speed profile is determined without information on power
distribution. Then, the generated speed profile serves as an input in
determining power distribution between fuel cells and batteries.
With the rule-based strategy’s help, the trajectory of fuel cell power
and SoC of batteries for each railway section is defined. The SoC
initial value in each section and the fuel cell power trajectory for the
same section are used as inputs of the dynamic programming al-
gorithm so that the renewed version of the speed profile is
generated with the influence of power distribution considered. The
speed profile with accuracy improved can be sent back to the rule-
based strategy to optimize power distribution. The iteration can be
repeatedmultiple times to refining the result if necessary. Thus, the
computational time of calculating each iteration stays at a similar
level as before, with an affordable increase of time caused by
additional calculation.

5.2. Implementation of the co-optimization mechanism

When generating driving cycles with dynamic programming,
the velocity profile is firstly generated between every two stations.
According to the rule-based strategy, the fuel cell system power is
updated at each stop. Therefore, the fuel cell system power resulted
from energy management can work as an input to the dynamic
programming algorithm.

As the fuel cell power of each section is given, the battery power
can be obtained:

Pbat½k�ðx1½k�;u½k�Þ ¼ P½k�ðx1½k�;u½k�Þ � Pfc½k�; (22)

where P½k�ðx1½k�;u½k�Þ is the load power, Pfc[k] relates to the fuel cell
system power of the k-th stage and Pbat[k](x1[k], u[k]) is the battery
power of the k-th stage. After the battery power is obtained, it can
be transformed into a variation in SoCwith the following equations.

If Pbat[k]⩾0:

DSoC½k�ðx1½k�; x2½k�;u½k�Þ ¼
Pbat½k�ðx1½k�;u½k�Þ,Dt
Qbat,VocðSoC½k� 1�Þ,

1
hdischarge

;

(23)

if Pbat[k] < 0:

DSoC½k�ðx1½k�; x2½k�;u½k�Þ ¼
Pbat½k�ðx1½k�;u½k�Þ,Dt
Qbat,VocðSoC½k� 1�Þ,hcharge; (24)

where DSoC[k](x1[k], x2[k], u[k]) is the SoC variation, Qbat describes
the battery capacity, Voc is the open circuit voltage, hdischarge the
discharge efficiency and hcharge refers to the charge efficiency of the
batteries. The values of hdischarge and hcharge are calculated with the
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Fig. 13. SoC and fuel cell system power trajectories after online simulation. (a) SoC, (b) Fuel cell system power.

Fig. 14. Comparison between the rule-based strategy and the PMP reference strategy regarding: (a) Fuel cell system power trajectories, (b) SoC trajectories.

Table 8
Comparison between the rule-based strategy and the reference strategy.

Item Rule-based strategy Reference strategy

SoCend 0.5001 0.5001
Averaged fuel cell power 91.0526 kW 91.0054 kW
Total drive time 6045 s 6045 s
Hydrogen consumption 17676 g 17656 g
Consumption pro km (full train) 213.93 g 213.68 g
Hydrogen increase compared to reference 0.11 % /

Table 9
Results of the total running time after co-optimization.

Shortest total running time 4514 s : 575856 kJ
Longest total running time 6540 s : 387483 kJ
Optimal total running time 6045 s : 380385 kJ
Real distance 82627 m
Calculated distance 82634.04 m
Difference in distance 7.04 m
Total calculation time 31h
Utilized memory 86.18 GB
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averaged battery voltage and the averaged open circuit voltage
during the online simulation. It is worth mentioning that, when
calculating DSoC of the k-th stage, the corresponding value of Voc is
interpolated with the SoC of the (k-1)-th stage.

Then, the SoC matrix of the current stage corresponding to all
controls is determined. In the first time stage, the adjustment of the
SoC matrix is formulated as follows:

SoC½1�ðx1½1�; x2½1�;u½1�Þ ¼ SoCinit; section
þ DSoC½1�ðx1½1�; x2½1�;u½1�Þ; (25)

where SoCinit, section is the SoC at the beginning of the section. In
other time stages, the adjustment of the SoC matrix is:

SoC½k�ðx1½k�; x2½k�;u½k�Þ ¼ SoC½k� 1�ðx1½k� 1�; x2½k� 1�;u½k� 1�
þDSoC½k�ðx1½k�; x2½k�;u½k�Þ:

(26)

With the SoC matrix corresponding to all the inputs of k-th stage,
the matrix of open circuit voltage Voc[k](SoC[k]) and the resistance
R0[k](SoC[k]) are determined with interpolation. With these values,
the matrix of the battery current Ibat[k](x1[k], x2[k], u[k]) is
12
calculated with the following equation:

Ibat½k�ðx1½k�; x2½k�;u½k�Þ

¼ Voc½k�ðSoC½k�Þ
2,R0½k�ðSoC½k�Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Voc½k�ðSoC½k�Þ2 � 4,Pbat½k�,R0½k�ðSoC½k�Þ

q
2,R0½k�ðSoC½k�Þ

:

(27)

If a value in matrix Ibat[k] is greater than the given limit of battery
current Ibat, max or less than Ibat, min, the transition cost of the
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corresponding control is allocated with an invalid value, to exclude
this control in the selection of optimal control trajectory. The
detailed workflow is displayed in Fig. 15 and summarized as
follows:

C Step 1: the cost-to-go values of all states in Eq. (11) are
initialized at the start time.

C Step 2: the SoC matrix SoC[0] is initialized with SoCinit, section
and the initial open circuit voltage Voc, init(SoC[0]) is deter-
mined with interpolation.

C Step 3: the states of the (k � 1)-th stage x1[k � 1] and
x2[k � 1] under different u[k] are calculated with Eq. (6) and
Eq. (7), respectively.

C Step 4: the matrix of transition cost P[k](x1[k], u[k]) and its
corresponding battery power Pbat[k](x1[k], u[k]) is calculated
with Eq. (22).

C Step 5: DSoC[k](x1[k], x2[k], u[k]) is determined with Eq. (23)
or Eq. (24) and SoC[k](x1[k], x2[k], u[k]) is updated.
Fig. 15. Speed trajectory optimization between two stations with fuel cell power and
battery current limit considered.
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C Step 6: Voc[k](SoC[k]) and Rbat[k](SoC[k]) are determinedwith
interpolation, and Ibat[k](x1[k], u[k]) is calculated with
Eq. (27).

C Step 7: invalid values of Ibat[k](x1[k], u[k]) are detected and
the corresponding transition costs are neglected.

C Step 8: the cost-to-go matrix in the k � 1-th time stage is
calculated by interpolation.

C Step 9: the rest of the transition cost P[k](x1[k], u[k]) is added
to the cost-to-go matrix of (k � 1)-th stage.

C Step 10: the optimal control u[k] is determined by applying
the Bellman’s principle of optimality.

C Step 11: the cost-to-go matrix in the k-th time stage and SoC
[k](x1[k], x2[k], u[k]) are updated.

C Step 12: if the final time stageN is not reached, back to step 3.

As a result, a more accurate speed profile is generated, in which
the trajectory of fuel cell power and the battery current limits are
considered. Then, the power distribution can be optimized in the
rule-based strategy with the updated driving cycle. Through this
method, the mutual influence of the speed profile and energy
management is fully considered.
5.3. Results

In the same manner as in previous sections, the railway route
with 14 stops from Bremerv€orde to Cuxhaven is chosen to generate
the speed profile. The total distance is 82.6 km. The original speed
profile is determined based on the terrain information, the time-
table, and the power limit of both the fuel cell and the battery.
Fig. 16 displays the generated velocity trajectory under a total drive
time of 4615 s, which is also the shortest possible drive time. Taking
this speed profile as input, the power distribution is then deter-
mined in the rule-based strategy. The resulted trajectories of SoC,
power demand, and fuel cell system power, as well as the power
distribution, are shown in Fig. 17.

Since the trajectory of fuel cell power is determined, and the SoC
of batteries upon departure at each train station is available, they
will be used in the dynamic programming to improve the speed
profiles’ optimization. In the next step, the battery current limits
are considered instead of the battery system’s power limit. The
second execution of dynamic programming then generates the
optimized speed profile considering the influence of energy man-
agement. Fig. 18 presents the Pareto front between energy con-
sumption and drive time before and after co-optimization.

Notably, the speed profile algorithm after co-optimization
shows better performance when the drive time is shorter. The
Fig. 16. Original speed profile for a drive time of 4615 s without considering the in-
fluence of EMS.



Fig. 17. Online simulation results based on the original speed profile for the minimal drive time of 4615 s: (a) Power distribution, (b) Load power demand, (c) SoC, (d) Fuel cell
system power.
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lowest point of the Pareto curves indicates minimal energy con-
sumption. Obviously, the minimal energy consumption shows no
remarkable difference before and after co-optimization, as the two
curves stay quite close with each other for the drive time longer
than 5000 s. The corresponding drive time of minimal energy
consumption also lies in this area. The drive time corresponding to
minimal energy consumption is 6045 s, and it is highlighted with a
red cross in the figure. The corresponding energy consumption is
listed in Table 9. Therefore, the generated optimal speed profiles
corresponding to minimal energy consumption are also almost
identical before and after co-optimization, shown in Fig. 19. The
speed profile after co-optimization is represented as a red curve. It
has almost the same trajectory as the speed profile before co-
optimization, which is represented as a blue curve so that the red
Fig. 18. Energy consumption corresponding to drive time before and after co-
optimization.

Fig. 19. Speed profile before and after co-optimization for a drive time of 6045 s.
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curve completely covers the blue one. The deviation of calculation
in the distance and the computational demands are listed in
Table.9. The total calculation time and memory utilization have
increased to 31 h and 86.18 GB, respectively, which is much higher
than before the co-optimization. Because in each step of the second
execution of dynamic programming, several additional matrices
such as the SoC and the battery current need to be calculated, which
have considerable computational demands due to their large size.

However, there is an obvious improve on the consumptionwhen
a short drive time is required. The earliest arrival time before co-
optimization lies at 4615 s. Taking a total drive time of 4615 s for
instance, the train consumes 511700 kJ energy after co-
optimization, which is 32900 kJ less compared with 544600 kJ
before co-optimization. The energy is saved by 6.04 % in this case.
Both points for energy consumption corresponding to drive time of



Table 10
Earliest arrival time before and after co-optimization.

Item Before co-optimization After co-optimization

Earliest arrival time 4615 s 4514 s
Time saving in % 2.19 % /

Fig. 20. Speed profile before and after co-optimization for a drive time of 4615 s.

Table 11
Simulation results before and after co-optimization for a drive time of 4615 s.

Item Before co-optimization After co-optimization

SoCend 0.5360 0.5222
Averaged fuel cell power 153.75 kW 149.62 kW
Simulation time 4615 s 4615 s
Hydrogen consumption 26136 g 25142 g
Consumption pro km 316.31 g 304.28 g
Consumption decrease / 3.80 %

H. Peng, Y. Chen, Z. Chen et al. eTransportation 9 (2021) 100130
4615 s are marked with red circles in Fig. 18. Besides, the co-
optimization helps to reach a shorter drive time for the given
route. The earliest possible arrival time lies at 4514 s after co-
optimization, which is 101 s shorter compared with 4615 s before
co-optimization. The shortest possible drive time decreases by 2.19
% in this case, shown in Table 10.

A comparison of speed profile before and after co-optimization
for a total drive time of 4615 s is presented in Fig. 20. The new speed
profile considers the influence of the power distribution. Therefore,
it is able to take full advantage of the hybrid power train configu-
ration. Taking the new speed profile as input, a better power dis-
tribution can be determined by the rule-based strategy. A
comparison of the SoC and the fuel cell system power before and
after co-optimization is presented in Fig. 21. After co-optimization,
the SoC trajectory shows less fluctuation and the fuel cell system
power stays stable with a lower average power. It is worth noting
that in the fuel cell output power trajectories, some peak values
exist because the low SoC mode is activated and the fuel cell power
is increased by the factor a than the mean load power. The simu-
lation results before and after co-optimization are summarized in
Table 11. 25142 g hydrogen is consumed for Alstom iLint route in
summer, with a total drive time of 4615 s. Compared with the re-
sults before co-optimization, 3.80 % saving on hydrogen con-
sumption is achieved.
Fig. 21. EMS results before and after co-optimization for a d
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6. Conclusions

In this work, the co-optimization of the total running time,
timetables, driving strategies, and energy management strategies
of the hydrogen-powered hybrid train is introduced. Firstly, a two-
dimensional forward dynamic programming algorithm is utilized
to generate the speed profile between two railway stations
considering the continuous varying speed limits and gradients. The
computational efficiency is improved through the parallelization of
the algorithm by interpolative estimation of the cost-to-go values.
Besides, with a tricky initialization of the cost matrix, the boundary
problem is solved, forcing the initial values of the state variables to
be zero. With the aid of the Pareto solutions, the optimal drive
times that minimize the energy consumption can be found. Next,
the whole journey’s total drive time, and the optimal time table,
which describes the optimal drive time distribution between the
railway sections, are determined by the second dynamic pro-
gramming execution. For a driving cycle of 82.6 km, the calculated
distance deviation due to discretization is 6.97 m and the total
calculation time is 13.5 h. The optimal running time of 6045 s with
minimal energy consumption is determined, which is about 8 min
less than the existing timetable and consumes 1.8 % less energy.

As for the energy management strategy, a rule-based online
strategy is used. The rule-based strategy utilizes the specific con-
sumption curve’s convexity, which combines the advantages of
optimality, adaptivity, stable operation of fuel cell systems, and
scalability. Its result, which is the power distribution between the
battery and the fuel cell, is used to improve speed profile accuracy.
Thereby, a sequential optimization is introduced to realize the
decoupling, which maintains the number of state variables at two
and reduces the computational cost. After the co-optimization, a
shorter drive time to a given route can be found and the energy
consumption is obviously reduced if a short driving time is
required. In terms of the Alstom iLint1 route, no remarkable dif-
ference is presented before and after co-optimization for the drive
time of 6045 s corresponding minimal energy consumption.
However, if a short drive time of 4615 s is expected, the energy
consumption is saved by 6.04 % after co-optimization compared to
the value before co-optimization. Meanwhile, with the optimized
rive time of 4615 s: (a) SoC, (b) fuel cell system power.
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speed profile, the energy management strategy’s hydrogen con-
sumption decreases by 3.8 %.
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