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a b s t r a c t

A comparative study of energy management strategies for fuel cell hybrid trains, which focuses merely
on universally applicable power distribution strategies, is presented in this contribution. These scalable
strategies include a load follower strategy, an adaptive rule-based strategy, and adaptive Pontryagin's
minimum principle (APMP)-based strategies with or without considering the relaxation process in
batteries. For the load follower strategy, information about the characteristic consumption curves of the
fuel cell system and the equivalent circuit of the batteries is not required. The adaptive rule-based
strategy exploits the fuel cell system's characteristic consumption curves to maintain the fuel cell po-
wer close to its mean value. For the APMP-based strategies, in addition to the fuel cell modeling, the
battery modeling with and without relaxation process in batteries is considered separately. In order to
fairly compare the different scalable energy management strategies regarding hydrogen efficiency,
Pontryagin's minimum principle-based strategy is used as the reference strategy, which considers the
relaxation process in batteries. The comparison of the four strategies in terms of fuel economy is firstly
based on the simulative analysis. For the different strategies, the additional hydrogen consumption
amounts to 1.6%, 0.7%, 0.6%, and 0.6% respectively, compared to the reference strategy under a typical all-
day regional train driving cycle. Then, in the RWTH Aachen University's Center for Mobile Propulsion, the
hydrogen consumption is measured experimentally using the different strategies for a short driving
cycle. The APMP strategy considering the relaxation process in batteries, consumes the least hydrogen
per kilometer travel of 161.9 g/km, with charge sustaining maintained, which is the most energy-efficient
energy management strategy. The simulation and experimental results show that the strategy should be
selected based on the level of detail to utilize the modeling accuracy of components. Furthermore, due to
the scalability of the strategies, they can be further transferred to other applications without enormous
tuning effort.

© 2021 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Background

Using hydrogen technology to reduce carbon dioxide emissions
attract more and more attention. The European Commission pre-
sented its hydrogen strategy to meet the 2050 climate neutrality
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goal of the European Green Deal last year [1]. In order to reduce
emissions in transportation, hydrogen-powered vehicles, buses,
and trains have already become a reality. Toyota brought the second
generation of fuel cell hybrid vehicles Mirai to market in 2020 [2].
Numerous companies have carried hydrogen fuel cell studies and
practical fuel cell bus trials [3]. Alstom's first fuel cell hybrid trains
began their commercial service in Germany in 2017. In December
2020, the train completed its three months of testing in Austria. So
far, a total number of 41 fuel cell trains of Alstom have been sold [4].
Siemens is also developing fuel cell trains based on its platform
Mireo. A joint project is carried on with Ballard Power System and
RWTH Aachen University to investigate the interaction between
fuel cell systems and batteries [5]. Recently, Siemens and Deutsche
Bahn announced to launch fuel cell trains trial [6]. This contribution
results from the project with Siemens and the strategies to be
introduced can be transferred to other applications.

1.2. Literature survey

As there are two energy sources available and no extra chargers
in the fuel cell hybrid trains, power distribution between fuel cells
and batteries is controlled to improve fuel economy and durability
and safety of components [7]. In Ref. [8], various degradation
modeling methods of fuel cells and batteries are reviewed. In
Ref. [9], battery thermal safety is considered in developing energy
management strategies for hybrid vehicles with a high energy
battery system and a high power battery system. The energy
management strategies are commonly grouped in three types,
including rule-based strategies, optimization-based strategies, and
learning-based strategies [10,11]. In Ref. [12], different energy
management strategies are reviewed for battery and capacitor
hybrid systems regarding energy efficiency and battery aging. In
Ref. [13], the power allocation strategies are comparatively studied
for fuel cell and capacitor hybrid vehicles. However, the local
optimization-based methods are not comprehensively discussed in
Ref. [13]. The principles of various strategies and their advantages
as well as drawbacks can be found in many works. In the following
parts, the rule-based methods, including deterministic and fuzzy
logic-based rule strategies, the local optimization-based method
including various sub-types, and the global optimization-based
method, and the learning-based method, are sequentially
reviewed based on literature study.

The rule-based strategy can be divided into deterministic and
fuzzy logic rules. The deterministic rules contain PI-controller,
finite state machine, load follower, frequency separation, or
combining these common strategies [14]. The rule-based strategy
has a low computational load, which is suitable for real-world ap-
plications. Nevertheless, its performance regarding fuel efficiency is
limited because the expert experience, which is the basis of the
rule-based strategy, is restricted. In Ref. [15], genetic algorithms are
applied in energy management strategies to optimize rules, pa-
rameters, and objectives. But, the genetic algorithm is more suit-
able for parameter optimization than process optimization, and
predefined driving cycles are necessary. In Ref. [16], the strategy
uses a low-pass filter to determine the hybrid ship's fuel cell power.
The cut-off frequency varies based on the support vector machine
to identify the ship's operation conditions. However, the support
vector machine needs to be trained offline, which limits its adap-
tivity. In Ref. [17], a finite state machine is used as energy man-
agement considering the batteries and fuel cells' power capability.
Thereby, various control rules based on heuristic experiences are
developed. Nevertheless, the fuel cell systems are frequently turned
on and off, not desired in practical applications. In Ref. [18], state
machine, operational mode control, and equivalent consumption
minimization strategy (ECMS) are combined with utilizing their
2

advantages. Numerous parameters are introduced to classify the
vehicle state, battery and fuel cell operation, and load power de-
mand into various scenarios. But, as learned from the results, the
fuel cell power system is often turned on and off, which shortens its
lifetime and the total fuel efficiency. Furthermore, a comparison to
optimal offline strategies is not given. In Ref. [19], the charge
depletion and charge sustaining strategy's threshold values are
optimized based on convex programming. However, the threshold
values resulted from convex programming also limit their scal-
ability to other vehicle configurations.

In terms of the fuzzy rule-based strategy, various membership
functions must be determined for the fuzzy variables. The mem-
bership functions’ parameters can be optimized using a genetic
algorithm to improve fuel economy under certain driving condi-
tions [20]. However, the optimized membership function does not
maintain its effectiveness under other driving conditions. In order
to improve the performance of the fuzzy rule-based controller
under different driving conditions, in Ref. [20], a self-organizing
map is trained to classify driving patterns. Under each driving
pattern, a corresponding fuzzy rule-based controller is optimized
offline by using evolutionary algorithms.

The optimization-based strategies include local and global ones.
The local optimization-based method is an online strategy, and the
most famous ones include the ECMS, the adaptive Pontryagin's
minimum principle-based strategy (APMP), and the model pre-
dictive controller (MPC), or a combination of them. In Ref. [21], it is
proved that the ECMS is mathematically related to APMP. In
Ref. [22], damping factors are added to the Hamiltonian to penalize
the fuel cell power fluctuation. Thereby, the lifetime cost is reduced
with a slight hydrogen consumption increase. However, the costate
value is assumed to be constant, which is identified to vary in the
offline results. As the degradation of components during operation
increases, the local optimization-based method should also
consider the actual component characteristics [7]. In Ref. [23], a
forgetting factor recursive least square method is used to identify
the maximum efficiency range of the actual fuel cell systems, and
this information is integrated into an optimized ECMS. However,
the resulted fuel cell power experiences high fluctuation, from
which the total energy efficiency and the lifetime suffer. In Ref. [24],
the fuel cell model used in the APMP-based energy management is
updated according to the degradation degree of fuel cells to get a
higher hydrogen efficiency over thewhole lifetime, which indicates
the dependency of the costate on the characteristic curve of com-
ponents. However, quantitatively adjusting the costate in function
degradation degree is not plausibly derived. In order to improve the
adaptivity, driving pattern recognition technology can be inte-
grated into the APMP-based strategy. In Ref. [25], a support vector
machine is used to realize online recognition, which is trained
based on existing data using particle swarm optimization. Under
each driving pattern, a constant costate value is assumed, which is
not optimal. The MPC strategy minimizes predefined cost function
with various constraints on control and state variables considered.
In Ref. [26], the MPC controller reduces fuel cell power fluctuation
and maintains SoC and temperature constraints. In the cost func-
tion, various weighting factors are introduced to balance different
goals. However, these factors are tuned manually, limiting the ap-
plications under other situations. In Ref. [27], the predictive model
controller aims at minimizing hydrogen consumption and
component degradation. Thereby, the cost function is not a linear or
quadratic form of the control variable. Therefore, dynamic pro-
gramming is adopted to determine the control sequences. How-
ever, the choice of the weighting factors, which are included in the
cost function, remains challenging. In Ref. [28], the Markov speed
forecast mechanism is used to predict future load power. Moreover,
based on the historical trip information, a reference trajectory for
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SoC is generated. Finally, a multi-objective controller is developed
by introducing various weighting factors. However, the weighting
factors are not generally optimal for other driving conditions. In
order to avoid using weighting factors in the cost function [29],
introduces an APMP-based MPC algorithm to minimize the total
equivalent hydrogen consumption in the time horizon. Thereby, the
costate is accurately estimated by the formula described in
Ref. [30].

Regarding the global optimization-based method, the most
famous strategies are Pontryagin's minimum principle (PMP) as
well as dynamic programming. In Ref. [31], implementation of both
algorithms with relaxation process in batteries considered are
comprehensively introduced. They can provide accurate and fair
references for comparing online energy management strategies,
which is not the case for most existing works relating to a
comparative study of energy management strategies.

Regarding the learning-based strategy, the control law is
derived from massive training data using a data mining algorithm
[32]. In Ref. [33], ECMS based on reinforcement learning is devel-
oped. Thereby, in the definition of the total equivalent hydrogen
consumption, various weighting factors penalize individual com-
ponents' unbeneficial operations. However, a vast data set collected
for three years is used to tune these parameters, influencing the
strategy's scalability if another vehicle is to be controlled instead of
the trained ones.

Summarily, the reviewed energy management strategies found
in the literature do not show enough transferability or scalability.
Various crucial factors are defined in the strategies, such as the
weighting factors in MPC or parameters defined in the rule-based
strategy. These factors are not physically derived but based on
heuristic experience, which can be further tuned by using offline
results or training data. However, the effectiveness is then limited
to cases similar to the training data. Therefore, most reviewed
works about energy management for fuel cell hybrid vehicles
concentrate on the strategies that lack scalability and optimality
when implemented. A comparative study that only focuses on
scalable strategies has not been found in the studies.

1.3. Main work

In order to solve the problem of scalability faced with energy
management, model-based strategies were developed and intro-
duced in our previous work. In Ref. [34], the convexity of the fuel
cell system's specific consumption curve is used to maintain the
fuel cell system operating around its mean value and realize high
fuel efficiency and prolong fuel cell lifetime. In this way, the
degradation of fuel cells as well as the fuel efficiency are not con-
tradictory anymore. Furthermore, in Ref. [30], an analytical formula
to calculate the costate in APMP is derived by using the state of
charge (SoC) of the battery system and the mean value of fuel cell
power for hydrogen-powered vehicles. As the formula is model-
based, the actual component characteristics are self-explanatory
considered. Furthermore, the APMP strategy is more promising
than ECMS because of the physically derived formula. Then, the
APMP strategy's robustness against component aging is validated
in Ref. [35]. However, the relaxation process in batteries is not
considered in the implementation of APMP, which will be further
developed in this work. Moreover, with various scalable strategies
available, the choice of the most suitable strategy becomes essen-
tial. However, a comprehensive comparison between different
scalable strategies is lacking. Therefore, the following contributions
are made to address the void:

C The scalable APMP will be further developed with the
relaxation process in batteries considered, which utilizes
3

more accurate modeling than the existing one. As the most
precise modeling of batteries and fuel cells is used in the
APMP strategy, the hydrogen efficiency is the highest. Under
a typical whole-day driving cycle, the fuel cell hybrid trains
with this strategy used consumemerely 0.6% more hydrogen
than optimal offline strategies.

C Simulative and experimental analyses are carried out for four
different scalable strategies, including load follower, which
outputs fuel cell power dependent on the SoC level, the
adaptive rule-based strategy, and the APMP strategies
considering the relaxation process in batteries or not. It is
worth mentioning that the test bench has a peak power of
one Megawatt, which is the testbed with the highest power
rating in the world so far, to analyze the fuel cell and battery
hybrid system.

C Offline PMP with the relaxation process in batteries consid-
ered is implemented to evaluate the performance of the
scalable strategies mentioned above, which is a fair and ac-
curate reference. Compared to other literature, which also
comparatively studies different strategies, the reference
strategies used here are more precise, making the compari-
son more convincing.
1.4. Outline of the paper

The whole modeling of the fuel cell hybrid trains, which is
required for analyzing the fuel economy, is shortly displayed in
section 2. Then, the offline PMP considering relaxation processes in
the battery system is briefly described in section 3. After that, four
scalable strategies are introduced in section 4. Next, an analysis of
the strategies by using simulations is given in section 5. Then, the
experimental measurement is introduced in section 6. Finally, a
short conclusion and outlook will be given in section 7.

2. Driveline

The configuration of the total driveline is shown in Fig. 1. The
auxiliary power consumption, in which the air condition makes a
big part, is assumed to be 30 kW in summer. In this work, thewhole
system is modeled in Simulink. Its structure is displayed in Fig. 2,
and the power demand of a half train is modeled. In Fig. 2, the
Fdemand stands for the force demand from drivers, Pdemand is the
auxiliary power consumption, Ftraction is the traction force, Fbrake is
the mechanical braking force, vtrain is the train velocity, and Fnormal
represents the component force of gravity in the vertical direction.
Besides the dynamical calculation of the battery SoC and the train
velocity, other subsystems are modeled by using lookup tables. The
detailed modeling and parameters of each subsystem in the
driveline are described in Ref. [34]. The speed and altitude profiles
of several train lines are implemented in the simulation, as dis-
played in Fig. 3. Fig. 3a shows the speed trajectory of the railway
section betweenMannheim, Karlsruhe and Basel. The second figure
displays the round trip of Regional Express 1 from Aachen to Co-
logne, and then back to Aachen. And Fig. 3c shows the trajectory of
the regional train RE27 running through Berlin and Brandenburg.

2.1. Fuel cell systems

In the project, the polymer electrolyte membrane (PEM) fuel
cells are utilized, which are chosen due to their high power density,
high system efficiency, quick start-up, good behavior under high
dynamic as well as zero-emission. The utilized fuel cell system
consists of two parallel-connected stacks and other ancillary
components in coolant, air as well as hydrogen paths. The net



Fig. 1. Configuration of the driveline.

Fig. 2. Schematic signal flow between subsystems of the fuel cell hybrid train.
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maximum power of the fuel cell system is 200 kW. Fig. 4 shows the
entire fuel cell system's characteristic consumption curve. More-
over, the characteristic consumption curve of degraded fuel cell
systems of the same product is also displayed as a comparison.

As a precondition of using the PMP-based strategy to determine
optimal offline results, the hydrogen consumption curve's con-
vexity within the operating range is required. Fig. 5 shows the
convexity of the characteristic consumption curve of the fuel cell
system, which corresponds to the following equation:

_mH2
ða , Pfc; 1 þð1�aÞ , Pfc; 2Þ<a, _mH2

ðPfc; 1Þ
þ ð1�aÞ, _mH2

ðPfc; 2Þ; (1)

where _mH2
stands for the mass flow, which is a function of the fuel

cell system's net output power, a is a number between 0 and 1, and
Pfc, 1 and Pfc, 2 are two arbitrarily selected operation points of the
fuel cell system.
2.2. Configuration of the lithium-titanate-oxide battery system

Due to the long lifetime of the lithium-titanate-oxide (LTO)
battery cells, they are applied in the fuel cell hybrid train. The
equivalent electrical circuit with three resistor-capacitor parallel
branches is adopted to model the entire battery system in Fig. 6,
which differs from most literature. As a result, the voltage drops
due to the entire internal resistance and relaxation processes can be
4

modeled accurately. As the active cooling is implemented in the
simulation, the temperature change of the battery systems is
neglected. The dependency of the open-circuit voltage, as well as
the inner resistance R0 on the SoC, are measured, as displayed in
Fig. 7a and Fig. 7b, respectively. Fig. 7ceh displays the parasitic
resistors and the various time constants in function of SoC, fitted by
measurement data. The total capacity of the battery system is
around 200 kWh, and its rated voltage is 835 V.

3. Offline PMP with the relaxation process in batteries
considered

In this section, a PMP-based offline strategy is introduced, which
provides an accurate global optimal solution. Thus, this offline
strategy can be further utilized as a benchmark to compare other
online strategies in the next section. The detailed information
about the offline PMP strategy can be found in Ref. [35], and here,
merely the important equations are reviewed.

Before the implementation of the strategy, the following vari-
ables and parameters are defined. The SoC of the battery is defined
as the state variable, and the output power of the fuel cell systems is
selected as the control variable. The three voltages over the para-
sitic resistor-capacitor branches are treated as changeable param-
eters, represented by V1, V2, and V3, respectively. Thus, only the SoC
can be controlled freely, and the same battery current couples the
parasitic voltages over the parallel branches. As the hydrogen
consumption is to be minimized, the Hamiltonian function, which



Fig. 3. The driving cycles: (a) A: between Mannheim, Karlsruhe and Basel (b) B: between Aachen and Cologne (c) C: through Berlin and Brandenburg.

Fig. 4. Characteristic consumption curves of fuel cell systems with and without aging. Fig. 5. Characteristic consumption of the fuel cell system in function of output power
and its convexity.

Fig. 6. The equivalent electrical circuit of the battery system.
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is the core part of the PMP-based strategy, is defined as follows:

HðSoCðtÞ; PfcðtÞ; lðtÞ; tÞ ¼ _mH2
ðPfcðtÞÞ þ lðtÞ, _SoCðtÞ; (2)

whereby _mH2
stands for the mass flow of hydrogen, which depends

on the output power of the fuel cell system, and l(t) is the costate.
Then, the optimal control variable is found with the following
equation:

P*fcðtÞ ¼ arg min
PfcðtÞ

ðHðSoCðtÞ; PfcðtÞ; lðtÞ; tÞÞ; (3)

in order to minimize the Hamiltonian function H in each time
5



Fig. 7. Dependency of the battery system's equivalent electrical circuit parameters on SoC: (a) The open-circuit voltage Voc, bat in Volt, (b) R0, (c) R1, (d) R2, (e) R3, (f) The time
constant R1 , C1 in seconds, (g) R2 , C2 in seconds, (h) R3 , C3 in seconds.
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Fig. 8. Mechanism of the load follower strategy.
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instant. In the following, the dynamic of the SoC and the costate l

will be derived.
Firstly, another variable Vdiff is used to describe the difference

between the battery system's open-circuit voltage and the sum of
various parasitic voltages:

Vdiff ¼ Voc; bat � V1 � V2 � V3: (4)

Then, the battery system output power is formulated as follows:

Pbat ¼ Ibat,ðVdiff �R0; bat , IbatÞ ¼ Pload � Pfc: (5)

Furthermore, the entire battery system current is written by
using the output power of the fuel cell system as well as the load
power:

Ibat ¼
Vdiff

2R0; bat
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðVdiff Þ2 � 4ðPload � PfcÞR0; bat

q
2R0; bat

: (6)

As the parasitic voltages are included in Vdiff, the dynamics of
the parasitic voltages can be calculated with the battery current as
follows:

8>>>>>>>><
>>>>>>>>:

_V1 ¼ � V1

R1,C1
þ 1
C1

,Ibat;

_V2 ¼ � V2

R2,C2
þ 1
C2

,Ibat;

_V3 ¼ � V3

R3,C3
þ 1
C3

,Ibat;

(7)

where R1, R2, R3 and C1, C2, C3 are the parasitic resistances and ca-
pacitances, all of which depend on SoC of the battery system. Based
on (6), the dynamic of the SoC can be determined:

_SoCðtÞ ¼ � Vdiff
2R0; batQbat

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðVdiff Þ2 � 4ðPload � PfcÞR0; bat

q
2R0; bat,Qbat

: (8)

Then, in the following, the dynamic of the costate will be
derived. As mentioned before, SoC is the only state variable, and the
parasitic voltages are defined as changeable parameters. Therefore,
the partial derivatives of these changeable parameters to SoC are
equal to zero. Based on that, the dynamic of the costate variable can
be derived as follows:

_l ¼ �l,
v _SoC
vSoC

¼ �l,

 
v _SoC

vVoc; bat
,
vVoc; bat

vSoC
þ v _SoC
vR0; bat

,
vR0; bat
vSoC

!

(9)

The partial derivative of the battery system's SoC change rate
with respect to Voc, bat and R0, bat are determined by the following
equations:

v _SoC
vVoc; bat

¼ � 1
2R0; batQbat

,

0
B@1� Vdiffffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V2
diff � 4ðPload � PfcÞR0; bat

q
1
CA;

(10)

v _SoC
vR0; bat

¼ 1

2R20; batQbat

0
B@ 2ðPload � PfcÞR0; bat � V2

diffffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
diff � 4ðPload � PfcÞR0; bat

q þ Vdiff

1
CA
(11)

As the sequence of load power is given as an input, the optimal
7

control variable can be found with (3). Then, the state and costate
variables are updated for the next time instant by using equations
(8) and (9), whereby (7) is used to determine the Vdiff in (8), while
(10) and (11) are utilized to calculate the (9). After an iterative
calculation until the final time instant, the sequences of the fuel cell
system power, as well as the SoC under the optimal control, are
determined, with which the hydrogen consumption is minimized.

In the next section, various online energy management strate-
gies will be introduced. As mentioned in the literature review, the
offline PMP strategy can be used as a reference strategy. For that
purpose, it is worth mentioning that for comparison, the load po-
wer trajectory and the SoC start and end values, which result from
online strategies, will be used as input to run the offline PMP al-
gorithm. In other words, each online strategy's performance will be
separately compared to its corresponding offline results.

4. Universally online applicable strategies

In this section, the principle of four different universally appli-
cable strategies will be introduced. The universality means that no
crucial parameters, which have to be tuned for different driving
cycles or system configurations, are introduced in the strategies.
Therefore, the strategies can be transferred to other applications
and systems without tuning effort.

4.1. Load follower maintaining SoC at middle level

According to the load follower strategy, the output power of the
fuel cell system follows the load power change to keep the battery
SoC at the middle level. Thereby, the output power of fuel cell
system is determined according to a control curve, as depicted in
Fig. 8. The fuel cell systems output maximum power if the SoC is
lower than 50%. Above 50%, the output power of the fuel cell system
decreases linearly as the SoC increases. If SoC is larger than 90%, the
fuel cell system is turned off to avoid overcharging the batteries.
The threshold values related to the strategy, including the slope of
decrease, can be optimized for each specific driving cycle. Here, the
value 50% and 90% are coarsely determined, and further optimi-
zation is not the target of this contribution and therefore not
considered.

If the load power increases, as happens during the acceleration
phase, the battery system assists the acceleration by providing high
positive power, and the battery SoC decreases. According to the
control strategy, fuel cell power begins to increase. After the ac-
celeration phase, the load power demand decreases, which is
smaller than the output power of the fuel cell systems. Then, the
excess fuel cell power charges the battery system, and the SoC
returns to a balanced value. While in the regenerative braking
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phase, the load power is negative, and the SoC increases. As the SoC
increased, the fuel cell system outputs less power to avoid over-
charging of batteries, and the SoC begins to go back to its balance
value.The most important advantage lies in its robustness and low
computational effort. No information about component modeling
is necessary. If the component ages with time, the control strategy
retains its effectiveness, because merely SoC is required to control
the fuel cell power instead of other component-related parameters.
As a result, the output power of the fuel cell systems oscillates
around the mean load power due to the trains' various operation
phases, from which the fuel economy and the fuel cell lifetime
suffer. This drawback will be solved by introducing an adaptive
rule-based method utilizing the fuel cell system's characteristic
consumption curve's convexity in the next subsection.
Fig. 10. Schematic explaining the time point to renew the mean value of the load
power.
4.2. Adaptive rule-based strategies utilizing the characteristic
consumption curves of fuel cell systems

In section 2.1, the convexity of the fuel cell system's character-
istic consumption curve is explained. According to the convexity,
the hydrogen efficiency can be improved when the output power of
the fuel cell systems is near its mean value. For a given train travel,
this principle can be described by using the following equation:

_mH2
ðP
̄

fcÞ<

ðT
0

_mH2
ðPfcðtÞÞ dt
T

; (12)

whereby T stands for the travel time and t is the instant time.
When the charge-sustaining condition is satisfied, the load

side's total energy demand should be fully supplied by the fuel cell
system. Here, the battery losses due to inner resistance are
neglected. Then, the charge-sustaining condition can be expressed
by using the following equation:

ðT
0

PfcðtÞdt ¼
ðT
0

PloadðtÞdt: (13)

Thus, according to (12), if the operating points of the fuel cell
system are concentrated and are close to the global average of the
load power, a better hydrogen efficiency results. In this subsection,
the design of an adaptive rule-based strategy based on this prin-
ciple is introduced. Its mechanism is shown in Fig. 9a.In the case of
a low SoC level, the fuel cell system is controlled to work in mode 1,
inwhich the fuel cell power increases to be (1þ a) times of the load
power average value, whereby a is a positive factor. Conversely, in
the case of a high SoC level, the fuel cell system works in mode 3
and its power is decreased by factor b. Otherwise, the fuel cell
systems work in mode 2, and its power equals the average load
power. Furthermore, in order to avoid frequent transition between
Fig. 9. Mechanism of the adaptive rule-based strategy: (a) Three operatio
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different modes, a hysteresis control is implemented in Fig. 9b,
which helps to reduce oscillation in fuel cell power. In this contri-
bution, the switch points of the SoC a1, a2, a3, a4 are set to 0.25,
0.35, 0.85 and 0.95, respectively. For a higher fuel efficiency, the
train should work in mode 2 as much as possible. Thus, the
calculation of the load power average value becomes a crucial task
in this strategy.

In online applications, the load power's global average value
during the whole travel is unknown in advance. Hence, the average
load power is estimated based on historical information. The load
power demand of a train has massive variations in three phases:
acceleration, cruising and regenerative breaking. During the ac-
celeration, the power demand is massive to overcome the inertia
force. In this case, the average load power could be overestimated.
Conversely, as the load power is negative during regenerative
breaking, the average load power could be underestimated. In order
to reduce estimation error, the average load power update occurs
every time the train leaves stations instead of during driving be-
tween two stations. Fig. 10 shows the time point in which the load
power average value is calculated and updated. Besides, the
detailed process of calculating the average load power is introduced
in Ref. [34].
4.3. APMP without considering the relaxation process in batteries

In the offline PMP strategy, the optimal initial value of the cos-
tate is determined with a shooting method. Thereby, the load in-
formation along the entire driving cycle is required, which is not
possible in real-time applications. In this section, an adaptive PMP-
based strategy is introduced as an online strategy. For this purpose,
an analytical formula is introduced to regularly correct the costate
by using history information to keep the online strategy casual.
According to the energy conservation principle, the costate value
n modes, (b) Mode transition with the help of the hysteresis control.
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depicts the equivalent hydrogenmass of using the battery power, as
the battery discharging now has to be compensated by consuming
hydrogen in the future. The costate is identified as a function of SoC
and the fuel cell system's average power. The detailed derivation
and description of the function can be found in Ref. [30]. Here, only
the most important steps of deriving the analytical formula are
introduced.

In (3), the optimal control of the Hamiltonian function is chosen.
Thus, it can be assumed that the partial derivative of the Hamil-
tonian function with respect to the output power of the fuel cell
system at the optimal control value equals zero:

vH
vPfc

�����
Pfc¼P*

fc

¼ v _mH2

vPfc
þ l$

v _SoC
vPfc

�����
Pfc¼P*

fc

¼ 0; (14)

where P*fc is the optimal fuel cell power that minimizes the
Hamiltonian function. Due to the convexity of the fuel cell system's
consumption curve, the optimal control approximately equals the
global mean value of the fuel cell system power. Thus, (14) can be
rewritten by substituting the average value:

vH
vPfc

�����
Pfc¼Pfc

¼ v _mH2

vPfc
þ l$

v _SoC
vPfc

������
Pfc¼Pfc

¼ 0: (15)

Thereby, the derivative of the battery SoC's change rate with
respect to the output power of the fuel cell systems can be derived
from (8) as:

v _SoC
vPfc

¼ 1
Qbat

,
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V2
oc; bat � 4,ðPload � PfcÞR0; bat

q : (16)

It deserves mentioning that instead of Vdiff in (8), Voc, bat is used
because the parasitic resistance-capacitor branches are not
considered in the APMP here. By substituting (16) into (15), the
costate can be calculated with:

l ¼ � v _mH2

vPfc
,

�
Qbat,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
oc; bat � 4,

�
Pload � Pfc

�
,R0; bat

r �������
Pfc¼Pfc

:

(17)

Within this equation, the derivative of the hydrogen mass flow
to the output power of the fuel cell system depends on the Pfc, as
displayed in Fig. 11, and the Voc, bat and R0, bat are functions of SoC, as
depicted in Fig. 7a and b, respectively.Since the mean power value
Fig. 11. The derivative of the hydrogen mass flow to the output power of the fuel cell
systems.
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of the fuel cell system almost equals the load demand power's
global average value, the termwith R0, bat in (17) could be neglected.
Then, the analytical calculation of the costate can be written as:

l ¼ � v _mH2

vPfc
,Qbat,Voc; bat

������
Pfc¼Pfc

; (18)

which displays the costate l as a function of the mean power of the
fuel cell system as well as the battery open-circuit voltage or rather
SoC. In Fig. 12, the analytically estimated costate values are
compared to the offline strategy's results. Under various combi-
nations of battery SoC and mean power values of the fuel cell
system, resulting from simulations under all the three driving cy-
cles, the costate's analytical estimation overlaps with the offline
trajectory to a large degree. Therefore, the correctness of the
analytical formula in Eq. (18) is validated.

In implementing the APMP strategy, the costate value is regu-
larly corrected by using this formula to eliminate the strategy's
sensitivity to the costate. The costate value is renewed with the
analytical formula every time the train leaves a station, which is
similar to the previous section's rule-based strategy. During the
remaining time, except leaving up stations, the costate is updated
by using (9) to utilize the optimal control theory. It is worth
mentioning that Vdiff in (10) and (11) is replaced by Voc, bat, because
the parasitic voltages are not considered here.

Besides, the fuel cell system's mean power values along the
entire drive cycles are unknown in real-time applications. There-
fore, the load power demand and the loss power in batteries in the
past are utilized to estimate fuel cell system power's mean values. It
worths mentioning that accurately estimating the mean power is
easy to implement if GPS and communication technology are used.

4.4. APMP with the relaxation process in batteries considered

In this subsection, the APMP strategy is further improved by
considering the parasitic resistance/capacitor branches. Identical to
the offline PMP part, the dynamics of costate and SoC are updated
with (8) and (9), respectively, whereby the parasite voltages are
considered, as required in (10) and (11). The regular correction of
the costate with the analytical formula is the same as in the pre-
vious subsection 4.3. It has to be mentioned that the battery
management system does not provide the parasitic voltages.
Therefore, they will be calculated inside the energy management
system, as the resistance and capacitance in batteries are deter-
mined with lookup tables since displayed in Fig. 7ceh. Then, the
corresponding parasitic voltages are updated with (7). With the
relaxation process considered, the high accuracy of the battery
modeling is utilized.

5. Simulation results

5.1. Simulation results of load follower

Fig. 13 shows the output power trajectories of the fuel cell sys-
tems as well as the battery SoC for different driving cycles. These
trajectories are compared to the offline PMP strategy's optimal
results, which are determined under the same load power trajec-
tory and battery SoC end value. The resulted battery SoC trajectories
remain within a relatively small range. It is more evident in the
result under the driving cycle C, as presented in Fig. 13e, and the
other two driving cycles are too short-time to show this phenom-
enon clearly. Since the control variable depends purely on the
battery SoC, the output power of the fuel cell systems jumps to the
upper limit when the initial SoC value of the battery system is less



Fig. 12. Analytically calculated costate values based on the battery SoC at the average output power of the fuel cell system under various driving cycles, which are compared to the
offline results: (a) A driving cycle with P

̄

fc equal to 106.5 kW, (b) B driving cycle with P
̄

fc equal to 114.1 kW, (c) C driving cycle with P
̄

fc equal to 78.5 kW.
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than 0.5. As presented in Fig. 13a, c and 13e, the fuel cell power
trajectories have a strong vibration, which reduces the hydrogen
usage efficiency according to the fuel cell system's characteristic
consumption curve. This drawback is more obvious under the two
short driving cycles A and B, and their hydrogen consumption
values are 7.7% and 4.2% higher than that of the offline strategy, as
displayed in Table 1.
5.2. Simulation results under the adaptive rule-based strategy

The output power trajectories of the fuel cell systems under the
adaptive rule-based strategy and the corresponding offline results
are displayed in Fig. 14a, c and e. As the fuel cell system power's
mean values are renewed at each railway stop, the trajectories have
a stepped form. In Fig. 14a, the fuel cell power raises rapidly at
around 4000 s. The reason is that the SoC gets close to the lower
limit, and the fuel cell power is adjusted to avoid over-discharging.
As the sequence under driving cycle C in Fig. 14e shows, the fuel cell
power maintains around an average value, which is similar to its
corresponding offline results. Furthermore, the SoC trajectories
under the rule-based strategy are almost overlapped with the SoC
trajectories under the offline results, as shown in Fig. 14b, d and f.
Thus, the fuel economy of the adaptive rule-based strategy is
relatively high compared to the load follower. Its hydrogen con-
sumption is 3.1%, 1.6%, and 0.7% higher than the optimal solution
under each driving cycle.
5.3. Simulation results of APMP strategy

Compared to the adaptive rule-based strategy, the output power
trajectories of the fuel cell systems under the APMP strategy show
10
more oscillation due to its principle. However, the fuel cell power
lies in a relatively small range around the offline sequences, as
displayed in Fig. 15a, c and e. Under driving cycle C, the deviation of
the fuel cell power trajectories from the corresponding offline re-
sults is the smallest. The reason for that lies in the much longer
driving time of the driving cycle C, which provides more historical
information records so that the error in estimating costate values is
less than under other driving cycles. The slightly more significant
deviations under driving cycles A and B are caused by the over-and
underestimation of the fuel cell system's mean output power.
However, the negative and positive deviations compensate against
each other so that the charge-sustaining condition is not influenced
overly. In Fig. 16, the costate variable's trajectories are displayed.
The costate trajectory under driving cycle C also shows a higher
degree of coincidence with the corresponding offline result due to
high accuracy in estimating the costate. As for the SoC trajectories,
they strongly overlap with the their corresponding offline results,
as displayed in Fig. 15b, d and f. Compared to the corresponding
offline results, the resulting additional hydrogen consumption is
2.2%, 1.5%, and 0.6% for different driving cycles, respectively, which
is further improved compared to the adaptive, scalable rule-based
strategy (see Table 2).
5.4. Simulation results of APMP with the relaxation process in
batteries considered

In this subsection, by considering the parasitic capacitor/resis-
tance branches, the APMP strategy is further improved. The cor-
responding fuel cell system's power and the SoC trajectories are
shown in Fig. 17. They overlap with the corresponding offline re-
sults to a large degree. In order to show the influence of considering



Fig. 13. SoC and fuel cell power trajectories under the load follower strategy, compared to offline results.

Table 1
Simulation results of load follower.

Driving cycle A B C

P
̄

fc
126.06 127.1 80.98

SoCend 0.739 0.655 0.726
mH2

(g) 37514 36346 177220
Offline mH2

(g) 34818 34892 174512
Ref. mH2

7.7 % 4.2 % 1.6 %
mH2

(g/km) 243.4 249.2 303.2

Table 2
Simulation results under the adaptive rule-based strategies.

Driving cycles A B C

P
̄

fc
118.85 116.15 78.18

SoCend 0.637 0.512 0.403
mH2

(g) 33074 31590 168972
Offline mH2

(g) 32080 31086 167816
Ref. mH2

3.1 % 1.6 % 0.7 %
mH2

(g/km) 214.6 216.6 289
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the relaxation process in batteries in the APMP, the trajectories are
plotted together with the results under the APMP strategy without
considering the relaxation process in Fig. 18. Thereby, a slight dif-
ference can be observed, and a further improvement in the fuel
efficiency results. The additional hydrogen consumption compared
11
to the corresponding offline results under driving cycle A and B are
reduced from 2.2% and 1.5% to 2.1% and 1.4%, respectively, while
that under the driving cycle C keeps the value of 0.6%. The resulted
data of the APMP strategies with and without considering the
relaxation process in batteries are listed in Table 3.



Fig. 14. SoC and fuel cell power trajectories under the adaptive rule-based strategies, compared to offline results.
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5.5. Comparison of four strategies

Fig. 19a, c and e show the resulted fuel cell power sequences of
four introduced strategies. The Pfc of load follower has a huge vi-
bration to maintain its SoC within a narrower range. However, this
leads to a drawback in the fuel economy, and the buffer function of
the battery systems is not fully utilized. The trajectories under the
other three strategies have a similar form, as they are all based on
calculating the load power's mean value. A rapid change of fuel cell
power can be observed in the adaptive rule-based strategy for the
driving cycle A, which prevents the SoC from falling below its
boundary-value. As for the SoC trajectories of all strategies, they are
compared with each other in Fig. 19b, d and f. The load follower's
SoC trajectory is quite different from the others. It maintains a
narrower range, especially under the driving cycle C. The resulting
SoC trajectories of the other three strategies are almost overlapped
and achieve the charge-sustaining condition. For the hydrogen ef-
ficiency, by comparing the hydrogen consumption in Table 4, the
12
rule-based strategy and the APMP strategies are proved to be more
hydrogen efficient than the load follower strategy. Thereby, the fuel
cell system's characteristic consumption curve's convexity is
considered in the adaptive rule-based strategy to improve
hydrogen consumption efficiency. The APMP strategy further en-
hances the fuel economy compared to the adaptive rule-based
strategies by quantitatively utilizing the battery and fuel cell
modeling. Finally, the APMP strategy with the relaxation process in
batteries considered provides an even better result than the APMP
strategy without considering the relaxation process.

6. Experimental validation

6.1. Test bench configuration

Fig. 20 shows the structure of the test bench at RWTH Aachen
University to validate the hydrogen efficiency of various strategies.
There are two energy resources: a fuel cell system with a derated



Fig. 15. SoC and the power trajectories of the fuel cell systems under the APMP-based strategies, together with the offline results.
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maximal net power of 150 kW and a battery system with a rated
charge and discharge current of 900 A. Instead of a real train, the
load power demand for a half regional train is simulated using
dSPACE SCALEXIO and realized with a dc/dc converter on the load
side. A load unit is used to absorb the mean power of the fuel cell
systems. A load battery system, which is the same as the battery
system on the source side, is utilized to absorb the high peak power.

However, due to hardware's technical restrictions, the load
battery system cannot cover the simulated maximal power.
Therefore, the implemented load power on the load side is down-
scaled by one third, which is formulated as follows:

Pload;testbench ¼ 2
3
,Pload þ 1

3
,Pfc: (19)

Here, one of the three parallel branches included in the battery
system is turned off by software. Besides, the output power of the
fuel cell systems is not downscaled to assure that the fuel economy
13
validation of strategies is not influenced. Next, the battery power on
the test bench is calculated as:

Pbat;testbench ¼ Pload;testbench � Pfc ¼
2
3
,
�
Pload � Pfc

�
(20)

Furthermore, due to the same technical issues, a shortened
driving cycle from Aachen to Cologne with 3065 s is utilized, which
is half of the driving cycle B, as shown in Fig. 21. Additionally, the
number of passengers in the half train is decreased from 120 to 60.
6.2. Experimental measurement results

Firstly, the correctness of modeling of the battery, the fuel cell
system, the dc/dc converter, and the effectiveness of the offline
PMP-based strategy as a benchmark are validated, which can also
be found in Ref. [31]. Then, the effectiveness of the online strategies
is validated through hardware-in-the-loop experiments.



Fig. 16. Costate trajectories under the APMP strategy, compared to offline results.
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As Fig. 22 shows, the experimentally measured trajectories
follow the simulated signal trajectories. Moreover, the measured
SoC values, which overlap with the simulated SoC values to a large
degree, have a minimum scale of 1%. Based on the measured fuel
cell power and SoC trajectories, the accuracy of the test bench is
validated.The measured power trajectories of the fuel cell system
and SoC under the adaptive rule-based strategy as well as the APMP
strategy with and without considering the relaxation process in
batteries are displayed with their corresponding offline results in
Figs. 23e25, respectively. As a comparison, the corresponding off-
line PMP results, which use the same load trajectories and SoC
boundary values as the online strategies to be validated, are added
to the plots. It is observed that the measured output power tra-
jectories of the fuel cell system maintain around the offline PMP
results. Furthermore, the measured and offline calculated SoC tra-
jectories are also highly overlapped.

Regarding the load follower strategy, due to the limitation of the
maximal fuel cell power in the test bench, 150 kW, the strategy is
also restrictively implemented. The resulted SoC trajectory still
overlaps with the offline one, as displayed in Fig. 26. Furthermore,
the SoC end value is much higher than the initial value, which does
not satisfy the charge-sustaining condition, if the initial SoC equals
to 0.5.The hydrogen consumption differences between the experi-
mental and their corresponding offline results are listed in Table 5,
which are 1.44%, 1.49%, 1.06%, and 1.87%, respectively. As the
experimental results are pretty close to the offline PMP results, the
hydrogen usage efficiency under the online strategies is validated.
It deserves mentioning that the load follower strategy's perfor-
mance is better than the developed adaptive rule-based strategy in
the experiment measurement, and the reason lies in the shortened
14
driving cycle. The APMP strategy, which does not consider the
relaxation process in batteries, realizes the best fuel economy if the
evaluations are based on comparison to the corresponding offline
PMP results. However, suppose the measured hydrogen con-
sumption under the two kinds of APMP strategies, with the relax-
ation process considered or not, is directly compared with the
identical SoC end values. In that case, the total hydrogen con-
sumption of the APMP strategy considering the relaxation process
in batteries is 11366 g, which is 9 g lower than that of the APMP
strategy without considering the relaxation processes. Accordingly,
the measured hydrogen consumption of the APMP considering the
relaxation process is the least and equals 161.9 g/km. Therefore,
different evaluation criteria may lead to different conclusions due
to the short driving cycle used for experimental testing. Never-
theless, the APMP performs better than the rule-based strategy and
the load follower regarding the hydrogen efficiency and charge-
sustaining condition.

7. Conclusions

In this contribution, a comparative study among four different
scalable energy management strategies is investigated. For that
purpose, the offline PMP strategy considering the relaxation pro-
cess in batteries is proposed, which is used as an accurate and fair
reference to evaluate the performance of different online strategies.
After that, the principles and implementation of four scalable en-
ergy management strategies are introduced, including the load
follower, the adaptive rule-based strategy, and the APMP strategy
considering the relaxation process in batteries or not. From the load
follower strategy to the APMP considering the relaxation processes



Fig. 17. SoC and the output power trajectories of the fuel cell system, under the APMP strategies with relaxation process considered, compared to offline PMP results.
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Fig. 18. Simulation results under the APMP strategies with and without relaxation process considered.
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Table 3
Simulation results of APMP strategies.

Driving cycle A B C

APMP
P
̄

fc
118.68 116.04 78.12

SoCend 0.636 0.512 0.403

l
̄
(g)

�12841 �12901 �10525

mH2
(g) 32736 31552 168856

Offline mH2
(g) 32042 31082 167816

Ref. mH2
2.2 % 1.5 % 0.6 %

mH2
(g/km) 212.4 216.4 288.8

APMP with R/C
P
̄

fc
118.44 115.95 78.09

SoCend 0.634 0.511 0.403

l
̄
(g)

�12829 �12891 �10517

mH2
(g) 32680 31522 168820

Offline mH2
(g) 32000 31078 167818

Ref. mH2
2.1 % 1.4 % 0.6 %

mH2
(g/km) 212 216.2 288.8

Fig. 19. Comparison of all strategies.
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Table 4
Comparison of all strategies.

Driving cycle Strategy mH2
(g) mH2

(g/km) Ref. Offline

A Load follower 37514 243.4 7.7 %
Rule-based 33074 214.6 3.1 %
APMP 32736 212.4 2.2 %
APMP wich R/C 32680 212 2.1 %

B Load follower 36346 249.2 4.2 %
Rule-based 31590 216.6 1.6 %
APMP 31552 216.4 1.5 %
APMP wich R/C 31522 216.2 1.4 %

C Load follower 177220 303.2 1.6 %
Rule-based 168972 289 0.7 %
APMP 168856 288.8 0.6 %
APMP wich R/C 168820 288.8 0.6 %

Fig. 20. Structure of the test bench with load power emulated at RWTH Aachen University.

Fig. 21. The shortened driving cycle from Aachen to Cologne for measurement on test
bench.
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in batteries, increasingly accurate modeling is integrated into en-
ergy management strategies. They are compared firstly based on
18
simulation and then on experimental measurement. It is worth
mentioning that this comparative study is focused on scalable
strategies, which has not been found in other works so far.
Regarding the comparison results, under a typical whole-day
driving cycle of regional trains, more consumption of 1.6%, 0.7%,
0.6%, and 0.6% compared to the offline results are observed. After
test bench measurement, the APMP strategy considering the
relaxation process in batteries consumes the least hydrogen per
kilometer travel of 161.9 g/km, with charge sustaining maintained.
Therefore, the APMP strategy with the most precise modeling of
batteries and fuel cells utilized achieves the best hydrogen effi-
ciency. It is suggested that the energy strategy should be chosen
based on the available modeling accuracy to maximize fuel econ-
omy and fuel cell lifetime. In the future, the mean value of the fuel
cell power can be calculated more accurately by considering the
future geographic and load information, which can be provided by
using GPS and communication methods.



Fig. 23. Measured SoC and fuel cell power trajectories under the adaptive rule-based strategies, together with the corresponding offline PMP results.

Fig. 24. Measured SoC and fuel cell power trajectories under the APMP-based strategies, together with the corresponding offline PMP results.

Fig. 25. Measured SoC and fuel cell power trajectories under the APMP strategy with relaxation considered, together with the corresponding offline PMP results.

Fig. 22. Measured and simulated results under the adaptive rule-based strategies.
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Table 5
Measured results of all strategies in the test bench.

Strategy Load follower Rule-based APMP APMP-R/C

P
̄

fc (kW)
142.3 114.8 112.9 112.3

SoCend 0.69 0.51 0.50 0.50
Measured mH2

(g) 15362 11606 11375 11366
Offline mH2

(g) 15144 11436 11256 11157
Ref. mH2

to offline 1.44 % 1.49 % 1.06 % 1.87 %
mH2

(full train) (g/km) 218.8 165.3 162 161.9

Fig. 26. Measured results of load follower in the test bench with the corresponding offline results.
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