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Due to fine discretization in space and time, the simulation of transient electromagnetic phenomena results in a large system of
equations. To cope with this computational effort model order reduction techniques can be employed. To assess the accuracy of the
solution of the reduced model, an error estimation is crucial. A commonly used approach consists of the evaluation of the deviation
between the reduced and the full model. This yields a loss of the a-priori property of the proper generalized decomposition. To
overcome this problem two a-priori criteria are presented in this paper.
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I. INTRODUCTION

Large scale finite element models arise from e.g. time
dependent electromagnetic field problems, due to the skin
depths of the eddy currents. On the one hand, to properly model
eddy currents, the conducting regions have to be accurately
discretized in space. On the other hand the time interval has
to be accurately sampled to consider all transient effects. The
resulting computational effort of these transient simulations can
be reduced by model order reduction (MOR). The reduction
techniques can be distinguished in two classes, namely a-
posteriori and a-priori methods. One well known a-posteriori
method is the proper orthogonalized decomposition (POD),
which is based on collecting snapshots of the reference system
to calculate a reduced representation. A-priori methods such as
the proper generalized decomposition (PGD) method construct
a reduced order model without any previously obtained solu-
tions [1]. While different error criteria for a-posteriori methods
have been formulated [4], a reasonable criterium for a-priori
methods is not yet stated. To maintain the a-priori property
of the PGD, an a-priori error criterium is presented in the
following.

II. MAGNETOQUASISTATIC PROBLEM

To solve the magnetoquasistatic field problem the Finite
Element Method (FEM) with the magnetic vector potential
A is employed (1). The problem consists of a domain with
unary boundary conditions and a conducting subdomain, which
allows eddy currents.

(1)∇× ν(∇×A(t)) +
σdA(t)

dt
= J(t)

III. PROPER GENERALIZED DECOMPOSITION

The basic principle of the PGD is to decompose the solution
of a linear partial differential equation (PDE) into a sum of m
tensor products [2] (2).

(2)A(x, t) ≈
m∑
i=1

Ri(x)Si(t)

An alternative direction scheme is adaptated to enrich the PGD
basis, based on fixing one component while solving the other
one [3].

To further improve the decomposition an update step can be
applied, which introduces an additional step after a new pair
R(x) and S(t) has been found. The update is applied by using
an operator W (R(x)), which maps all space modes into the
time domain and solves all time functions S(t) at once [1].

IV. ACCURACY OF THE PGD
Even though the PGD is applied to many areas, the error

evaluation and the information content of the single modes
were not a main focus of research here. The enrichment is
terminated after a certain a-posteriori relative error is fulfilled
or until a defined number of modes are enriched [3,5-7]. To
overcome this disadvantage different error criteria are intro-
duced and compared in this paper.

A. A-Posteriori Error Criteria

The need for a reference solution, which has to be ob-
tained from the complete system of equations, characterize a-
posteriori error criteria. Common criteria in this context use
the magnetic energy (3), the Joule losses (4) or the reference
solution Xref (5) evaluated using the two norm.

(3)εmag =
||Wmag,ref −Wmag,PGD||2

||Wmag,ref ||2
,

(4)εj =
||Pj,ref − Pj,PGD||2

||Pj,ref ||2
,

(5)εLSQ =
||XPGD −Xref ||2

||Xref ||2

B. A-priori Error Criteria

To retain the a-priori property of the PGD, two criteria
are presented in the following paragraphs. Combining these
two leads to a reasonable measure of relative and absolute
convergence of the decomposition.



1) Absolute Residual
Instead of comparing the reference solution to the PGD solu-

tion it is more convenient to compute the absolute residual (6).
Although a reference solution is not required, the evaluation of
all time steps in (6) with the reference system matrix M and
the time dependent excitation J(t) is still necessary, resulting
in high computational efforts. This criterium can be interpreted
as an a-priori version of (5) and yields the absolute residual.

(6)εAbs =
||MXPGD(t)− J(t)||2

||J(t)||2
2) Information content

Another approach can be formulated by using the singular
value decomposition. Under the assumption, that the singular
values of the system decrease rapidly, they can be used as a
measure of convergence of the enrichment. The evaluation of
the PGD solution in a certain time step can be reformulated
into matrix form by

(7)A(x, t) ≈
m∑
i=1

Ri(x)Si(t)

= MR · S .

In (7) MR is a matrix with the space modes Ri as columns
and S is a vector with the values of Si(t) in the evaluation
timestep as entries. The matrix MR can be decomposed by a
singular value decomposition and the resulting singular values
give a hint of the information content of the modes, because
MR acts as a linear projection on S.

Fig. 1. Academic example of a magnetizing coil (yellow) with a conductive
sample (red).

C. Application

The previously discussed criteria are applied to an academic
example of a coil with a conductive sample inside (s. Fig. 1).
The conductivity of the square sample with 10 mm edge length
is equal to 10 kS/m. The coil is operated by a sinusoidal current
of 100 A and frequency of 1 kHz. The relative permeability of
the sample is arbitrary set to 2183.2 and one period was divided
into 250 equidistant steps. From Fig. 2 it can be depicted that
the eddy current loss of the reduced order model (ROM) are
in good agreement with the reference solution, the deviation
is smaller than 0.15% for 8 modes. Fig. 3 shows the singular
values of MR (7) and it can be recognized, that the singular
values decrease fast after the 5th.

Fig. 2. Eddy Current Losses.

Fig. 3. Singular Values of MR for 8 Modes.

V. CONCLUSIONS

A measure for convergence of the enrichment process of
the PGD has been proposed, which is not based on reference
solutions nor on the reference system. In combination with
(6) the a-priori property of the PGD can be kept, while getting
important information of the relative and absolute convergence.
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[4] S. Clénet, T. Henneron, ”Error Estimation for Model-Order Reduction of
Finite-Element Parametric Problems”, IEEE Trans. Magn, vol. 52, 2016,
pp. 1-10.

[5] Z. Qin, H. Talleb, Z. Ren, ”A Proper Generalized Decomposition-Based
Solver for Nonlinear Magnetothermal Problems”, IEEE Trans. Magn., vol.
52, 2016, pp. 1-9.

[6] Z. Qin, H. Talleb, S. Yan, X. Xu, Z. Ren, ”Application of PGD on
Parametric Modeling of a Piezoelectric Energy Harvester”, IEEE Trans.
Magn., vol.52, 2016, pp. 1-11.
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