
  

ΦAbstract – For the simulation of permanent magnet 
synchronous machines many models at different levels of 
complexity are described in literature. In basic cases, the common 
equations lead to good and quick results, but do omit nonlinear 
and transient effects such as slotting, saturation, rotor movement 
and production deviations. In this paper, a transient model based 
on look-up table data from non-linear finite element analysis 
(FEA) is applied to a traction drive motor and extended to 
represent multiple rotor slices. The FEA is done in advance in 
parallel leading to a fast transient model. The derivation of the 
machine equations for multiple slices and the model are 
presented. Simulated currents are validated with measurement. 
Following the model is used to show the impact of different 
influence factors like skew, rotor torsion and pulse width 
modulation (PWM). 
 

Index Terms — Permanent Magnet Synchronous Machines, 
Rotor Vibration, Controlled PMSM 

I.   INTRODUCTION 
The increasingly fast growing sector of electric vehicles has 
led to new demands for electrical traction drives. The 
permanent magnet excited synchronous machine (PMSM) is a 
common choice of machine type in these applications due to 
the high efficiency and power density. Additional to the pure 
performance in the automotive sector sound and feel are 
important unique selling points of a vehicle. In the past, the 
main goal of acoustic machine design usually was the 
reduction of noise and vibrations rather than designing a 
specific sound characteristic. To fulfill such requirements of a 
highly dynamic traction motor driven by PWM in modern 
vehicles and other applications a deeper understanding of the 
nonlinear multi-physical dependencies of the electrical 
machine is necessary.  
 To improve and design the machine acoustics the use of a 
continuous or stepped skew in rotor or stator to reduce torque 
ripple, cogging torque, back EMF harmonics and acoustic 
performance is a common technique and extensively studied 
[1][2]. However, many papers focus solely on torque ripple 
and/or back EMF [3][4], also primarily regarding the open 
circuit (no load) performance, which in general can be 
improved and described by a skewing factor [5]. In [6] it was 
found that the torque ripple at full load is significantly higher 
than at no load, while in [1] and [7] small PMSMs were studied 
where skewing decreased the torque ripple at no load while 
increasing it at full load. 
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 The effective angle between rotor and stator field over the 
axial machine length is additionally influenced by rotor torsion 
due to load and torsional oscillations. A high constructional 
freedom of rotor and shaft is desirable to incorporate cooling 
solutions [8] or due to application requirements [9]. A hollow 
or otherwise uncommon rotor however usually has a lower 
stiffness significantly lowering the torsional eigenfrequencies 
and increasing oscillation amplitudes. Furthermore, for 
specific cases torsional vibrations occur in a strength which 
has to be considered [10][11]. The retroactive effects between 
the mechanical domain including torsional oscillations of 
skewed rotors and the electromagnetic behavior including 
controller and power electronics are rarely studied.  
 In [12] and [13] a system model for the simulation of a 
controlled PMSM is developed featuring a strong coupling 
between mechanical and electromagnetic domain. The 
approach of mapping machine parameters in advance in 
Look Up Tables (LUTs) offers the possibility to split the 
computational effort via parallelization in comparison to 
approaches such as circuit coupled iterative FEA. The 
approach includes slotting effects, cross coupling and 
saturation, which is relevant for a successful distinction 
between the said effects and the influence of torsion and skew. 
 While the model from [12] and [13] shows good results in 
these papers, it lacks the ability to describe skew and torsional 
rotor vibrations. Therefor in this paper the model is extended 
to the description of stepped and continuous skew and torsion 
by the multislice method from [14][15] featuring a variable 
slice count. This allows determination of the influence of skew 
and torsional vibrations on the current via relatively quick 
simulations. Additionally the relation between rotor 
discretization (meaning slice count) and accuracy of results 
can be obtained, and the model from [12][13] is further 
validated by application to a small traction drive motor. 
Simulation results in comparison to measurement and the 
influence of skew and torsion is shown before the paper is 
concluded. 
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Fig.  1  Overview of the model structure with the forward feed of voltage 
and the strongly coupled feedback via current and machine angle. 
 

 system I (d/q) controller τ 
I PWM 

LUTs 

L,Ψ  multislice 
dq-model 

U 
γ Iset 

PI 
multislice 

mechanical 
model 

γ 
γ γ I 

d 

I 

ΔI 



  

II.   DQ-MODEL INCLUDING MULTISLICE METHOD 
The utilized model is illustrated in Fig 1. It is derived from the 
basic equations of a synchronous machine in the rotor aligned 
two axis dq-coordinate system which link the machine 
voltages U and currents I depending on the machine state 
described by the time dependent magnitudes rotational angle 
γ, flux Ψ and inductances L. The forward path of the loop 
incorporates at the first stage the current controller which 
supplies the set point for voltage as duty cycle d  to the power 
electronics, which again reproduces the sinusoidal voltages of 
the 3-phase coordinate system by PWM. In combination with 
the variable machine state parameters from the LUTs the 
machine equations are used to compute the curents at each 
timestep. The torque τ extracted from the FEA corresponding 
to the calculated current is fed into a mechanical model of 
torsinal spring-damper-elements of the rotor and drivetrain.  

For basic considerations, which do not account for skew and 
torsion, the average rotor position leads to reasonable accurate 
results, especially if the focus is not acoustics and regarding 
other relevant effects like slotting, saturation, harmonics due 
to PWM or controller influence that can dominate the effects 
of skew and torsion.  

The approach of this paper is based on the multislice method 
whose principle is illustrated in Fig 2. In axial direction the 
machine is regarded as a series of n slices without skew and 
therefore constant angle between rotor and stator field. The 
advantage is the possibility to use 2D-FEA to describe the 
machine state in each slice over more complex and 
computationally extensive 3D Simulations. For a continuously 
skewed machine this leads to a discretization error, while for 
stepwise skewed machines the only error comes from the 
neglected effects in axial direction between slices of different 
angle. 

The starting point of the extended multislice model is the 
general equation for the voltage u of a synchronous machine 
with the time dependent current i(t), ohmic resistances R and 
the flux linkage ψ 

𝑢𝑢 = 𝑅𝑅 ∙ 𝑖𝑖(𝑡𝑡) + 𝑑𝑑
𝑑𝑑𝑑𝑑
𝜓𝜓. (1) 

The flux linkage can be divided in a part resulting from the 
permanent magnet excitation ψf and a part based on the 
currents ψi and the machine inductances L 

𝜓𝜓 = 𝜓𝜓𝑓𝑓 + 𝜓𝜓𝑖𝑖 = 𝜓𝜓𝑓𝑓 + 𝐿𝐿 ∙ 𝑖𝑖(𝑡𝑡) (2) 

which leads to the following equation (3) linking the voltage 
with the machine currents 

𝑢𝑢 = 𝑅𝑅 ∙ 𝑖𝑖(𝑡𝑡) + 𝑑𝑑
𝑑𝑑𝑑𝑑

[𝜓𝜓𝑓𝑓 + 𝐿𝐿 ∙ 𝑖𝑖(𝑡𝑡)]. (3) 

So far no assumptions where made limiting the validity. The 
common idealized model of a synchronous machine neglects 
saturation and slotting effects considering only the 
fundamental wave, resulting in fixed values for the flux 
linkage and inductance matrices. Saturation leads to a 
nonlinear dependency of flux linkage and inductances to the 
machine current, whereas slotting is a dependency of the rotor 
position, which for an ideal machine is given by its angle γ.  

𝜓𝜓 =  𝜓𝜓(𝑖𝑖, 𝛾𝛾)    𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟.    𝐿𝐿 = 𝐿𝐿(𝑖𝑖, 𝛾𝛾) (4) 

This leads to the rotor position and current state depending 
voltage equation for the synchronous machine (5): 

𝑢𝑢 = 𝑅𝑅 ∙ 𝑖𝑖(𝑡𝑡) + 𝑑𝑑
𝑑𝑑𝑑𝑑

[𝜓𝜓𝑓𝑓(𝑖𝑖(𝑡𝑡), 𝛾𝛾) + 𝐿𝐿(𝑖𝑖(𝑡𝑡), 𝛾𝛾) ∙ 𝑖𝑖(𝑡𝑡)]. (5) 

To calculate the machine currents from the supply voltage 
the voltage equation has to be solved for the current. For 
practicability, and due to the fact that the regarded machine is 
a permanent magnet synchronous machine, this is done in the 
rotor-aligned dq-system: 

𝑢𝑢𝑑𝑑 = 𝑅𝑅𝑑𝑑𝑑𝑑𝑖𝑖𝑑𝑑 + 𝑑𝑑
𝑑𝑑𝑑𝑑

[𝜓𝜓𝑓𝑓𝑓𝑓�𝑖𝑖𝑑𝑑 , 𝑖𝑖𝑞𝑞 , 𝛾𝛾� + 𝐿𝐿𝑑𝑑𝑑𝑑�𝑖𝑖𝑑𝑑 , 𝑖𝑖𝑞𝑞 , 𝛾𝛾� ∙ 𝑖𝑖𝑑𝑑 +
                                        𝐿𝐿𝑑𝑑𝑑𝑑�𝑖𝑖𝑑𝑑 , 𝑖𝑖𝑞𝑞 , 𝛾𝛾� ∙ 𝑖𝑖𝑞𝑞]             (6a) 

𝑢𝑢𝑞𝑞 = 𝑅𝑅𝑞𝑞𝑞𝑞𝑖𝑖𝑞𝑞 + 𝑑𝑑
𝑑𝑑𝑑𝑑

[𝜓𝜓𝑓𝑓𝑓𝑓�𝑖𝑖𝑑𝑑 , 𝑖𝑖𝑞𝑞 , 𝛾𝛾� + 𝐿𝐿𝑑𝑑𝑑𝑑�𝑖𝑖𝑑𝑑 , 𝑖𝑖𝑞𝑞 , 𝛾𝛾� ∙ 𝑖𝑖𝑑𝑑 +
                                        𝐿𝐿𝑞𝑞𝑞𝑞�𝑖𝑖𝑑𝑑 , 𝑖𝑖𝑞𝑞 , 𝛾𝛾� ∙ 𝑖𝑖𝑞𝑞].                 (6b) 

The self-inductances Ldd , Lqq and the mutual inductance Ldq 
(equal to Lqd) are elements of the inductance matrix, 
analogously the elements of the resistance matrix with the 
difference that Rdq and Rqd have to be zero. Execution of the 
time derivative and restructuring leads to   

𝑢𝑢𝑑𝑑 = 𝑑𝑑𝑖𝑖𝑑𝑑
𝑑𝑑𝑑𝑑
∙ 𝐴𝐴 + 𝑑𝑑𝑖𝑖𝑞𝑞

𝑑𝑑𝑑𝑑
∙ 𝐵𝐵 + 𝑋𝑋  (7a) 

𝑢𝑢𝑞𝑞 = 𝑑𝑑𝑖𝑖𝑑𝑑
𝑑𝑑𝑑𝑑
∙ 𝐶𝐶 + 𝑑𝑑𝑖𝑖𝑞𝑞

𝑑𝑑𝑑𝑑
∙ 𝐷𝐷 + 𝑌𝑌  (7b) 

with the following abbreviations which only depend on the 
mapped parameters describing the machine state   

𝐴𝐴 = 𝐿𝐿𝑑𝑑𝑑𝑑 + 𝑑𝑑𝜓𝜓𝑓𝑓𝑓𝑓
𝑑𝑑𝑑𝑑𝑑𝑑

+ 𝑑𝑑𝐿𝐿𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑

∙ 𝑖𝑖𝑑𝑑 + 𝑑𝑑𝐿𝐿𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑

∙ 𝑖𝑖𝑞𝑞   (8a) 

𝐵𝐵 = 𝐿𝐿𝑑𝑑𝑑𝑑 + 𝑑𝑑𝜓𝜓𝑓𝑓𝑓𝑓
𝑑𝑑𝑑𝑑𝑞𝑞

+ 𝑑𝑑𝐿𝐿𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑞𝑞

∙ 𝑖𝑖𝑑𝑑 + 𝑑𝑑𝐿𝐿𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑞𝑞

∙ 𝑖𝑖𝑞𝑞   (8b) 

𝐶𝐶 = 𝐿𝐿𝑑𝑑𝑑𝑑 + 𝑑𝑑𝜓𝜓𝑓𝑓𝑓𝑓
𝑑𝑑𝑑𝑑𝑑𝑑

+ 𝑑𝑑𝐿𝐿𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑

∙ 𝑖𝑖𝑑𝑑 + 𝑑𝑑𝐿𝐿𝑞𝑞𝑞𝑞
𝑑𝑑𝑑𝑑𝑑𝑑

∙ 𝑖𝑖𝑞𝑞  (8c) 

𝐷𝐷 = 𝐿𝐿𝑞𝑞𝑞𝑞 + 𝑑𝑑𝜓𝜓𝑓𝑓𝑓𝑓
𝑑𝑑𝑑𝑑𝑞𝑞

+ 𝑑𝑑𝐿𝐿𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑞𝑞

∙ 𝑖𝑖𝑑𝑑 + 𝑑𝑑𝐿𝐿𝑞𝑞𝑞𝑞
𝑑𝑑𝑑𝑑𝑞𝑞

∙ 𝑖𝑖𝑞𝑞   (8d) 

𝑋𝑋 = 𝜔𝜔 �𝑑𝑑𝜓𝜓𝑓𝑓𝑓𝑓
𝑑𝑑𝑑𝑑

− 𝜓𝜓𝑓𝑓𝑓𝑓 + 𝑖𝑖𝑑𝑑 �
𝑑𝑑𝐿𝐿𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

− 𝐿𝐿𝑑𝑑𝑑𝑑� − 𝑖𝑖𝑞𝑞 �
𝑑𝑑𝐿𝐿𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

− 𝐿𝐿𝑞𝑞𝑞𝑞�� +

𝑅𝑅𝑑𝑑𝑑𝑑 ∙ 𝑖𝑖𝑑𝑑  (8e) 

𝑌𝑌 = 𝜔𝜔�𝑑𝑑𝜓𝜓𝑓𝑓𝑓𝑓
𝑑𝑑𝑑𝑑

− 𝜓𝜓𝑓𝑓𝑓𝑓 + 𝑖𝑖𝑑𝑑 �
𝑑𝑑𝐿𝐿𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝐿𝐿𝑑𝑑𝑑𝑑� + 𝑖𝑖𝑞𝑞 �
𝑑𝑑𝐿𝐿𝑞𝑞𝑞𝑞
𝑑𝑑𝑑𝑑

+ 𝐿𝐿𝑑𝑑𝑑𝑑�� +

𝑅𝑅𝑞𝑞𝑞𝑞 ∙ 𝑖𝑖𝑞𝑞   (8e) 
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Fig.  2  (a) Illustration of the multislice method at the example of a 
continuously skewed rotor with skew angle α approximated by six slices. (b) 
Location of the slices field in the rotor-aligned dq-coordinate system. 

(a) (b) 



  

In tensor notation the restructured machine equations 
(7a..b) with the abbreviations (8a..e) can be written as 

𝑢𝑢 = �𝐴𝐴 𝐵𝐵
𝐶𝐶 𝐷𝐷� ∙  

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ �𝑋𝑋𝑌𝑌� = 𝑀𝑀 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑁𝑁  (9) 

Equation (9) has to be solved for each slice with the machine 
state parameters (flux and inductances) of that slice which 
depend on the angular position of the slice and the dq-current 
in the slices dq-coordinate system.  

The supplied voltage u drops over the series of all n slices, 
while the change in current di/dt is the same at every slice for 
a common coordinate system. Furthermore, the angle 
difference θj between rotor and stator field for each slice has 
to be taken into account via a rotation matrix Rot(θj), leading 
to the following voltage equation (10) for n slices: 

𝑢𝑢 = ∑ 𝑢𝑢𝑗𝑗 =𝑛𝑛
𝑗𝑗 ∑ 𝑅𝑅𝑅𝑅𝑅𝑅�𝜃𝜃𝑗𝑗� �𝑀𝑀𝑗𝑗 ∙  

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑁𝑁𝑗𝑗�𝑛𝑛
𝑗𝑗          (10) 

with         𝑅𝑅𝑅𝑅𝑅𝑅�𝜃𝜃𝑗𝑗� =  �
cos�𝜃𝜃𝑗𝑗� −sin�𝜃𝜃𝑗𝑗�
sin�𝜃𝜃𝑗𝑗� cos�𝜃𝜃𝑗𝑗�

�             (10a) 

The final step is solving for the current derivative: 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= �∑ �𝑅𝑅𝑅𝑅𝑅𝑅�𝜃𝜃j�𝑀𝑀j𝑅𝑅𝑅𝑅𝑅𝑅�𝜃𝜃j�
−1�𝑛𝑛

𝑗𝑗 �
−1
∙ �𝑢𝑢 − ∑ �𝑅𝑅𝑅𝑅𝑅𝑅�𝜃𝜃j��𝑛𝑛

j �  
(11) 

III.   DETERMINATION OF THE MACHINE PARAMETERS 
The necessary magnitudes describing the machine state are 

gathered in advance by Finite Element Analysis (FEA) based 
on the assumption of a quasi-static flux solution without eddy 
currents or hysteresis losses. The neglection of eddy currents 
is feasible due to the buried permanent magnets of the regarded 
machine. The alternating stator field has a low penetration 
depth on the rotor iron and therefor does not reach the not 
laminated permanent magnets. The assumption of no 
hysteresis leads to overestimated flux and magnetomotive 
forces at high frequencies where the hysteresis loop of the soft 
magnetic materials widens significantly. 

A.   Flux Linkage 
The total machine flux in any operating point is computed 

from the vector potential as solution of the FEA. The excitation 
flux, hence the part resulting from the permanent magnets, can 
then be computed by solving the system again with only 
magnet excitation and zero current while holding the 
saturation state constant.  

B.   Inductances 
The machine inductances are derived by the method 

described in [16]. The principle is related to the computation 
of the excitation flux: At first, the finite element problem is 
solved for one operating point. Subsequently the winding 
currents are changed one after another and the system solved 
again linearly with a fixed saturation state. From the change in 
flux in respect to the current the inductances are determined. 

C.   Discretization 
The operating points, which have to be simulated with the 

FEA, are given by the dimensions current id, current iq and 

rotational angle γ.  
Discretization of the dimensions has a great impact on the 

number of FEAs necessary. For the regarded PMSM with six 
pole pairs and 36 teeth a stepping of 0.4° mechanical angle and 
20 A (from -300A to 300 A effective current) are chosen as a 
compromise between accuracy and computational effort. In 
fig. 3 the value of the self-inductance of the d-axis is shown to 
illustrate this decision. Although reasonably smooth, some 
unsteadiness is visible, in particular at the minima. Since skew, 
torsion, a load step and other factors can lead to short time 
displacements of the dq-current, it is not sufficient to simulate 
only the near optimal area in the dq-plane.  

To reduce the number of FE computations only one half 
(positive or negative current) of the q-axis can be simulated 
since the other half is symmetric/antisymmetric and therefor 
can be computed via mirroring. It should be stated that some 
production deviations, i.e. rotor eccentricity, break this 
symmetry. 

The excitation flux of the direct axis for all current 
combinations, averaged over the rotational angle, is shown in 
fig. 4. The step width of 20 A is sufficient to map the d-
excitation flux without aliasing artifacts.  

More critical regarding discontinuities are the derivatives of 
inductances and fluxes. Exemplary in fig. 5 the derivative of 
the excitation flux ψfd with respect to the rotational angle γ is 
shown (at the arbitrary rotor position 1). It can be observed that 
at this rotor position at some current combinations (in case of 
this example at high positive d currents) variation between two 
points of the map is large compared to the overall variation. 
This limits the possible discretization stepwidth in the current 
and rotational angle direction in order to avoid ailasing 
artifacts which decrease the accuracy of the simulation results.  

Fig.  3 Inductance Ldd over rotation of one pole for a fixed dq-current. 

Fig.  4  Excitation flux ψfd over the current in d- and q-direction, averaged 
for all rotor positions. 



  

IV.   RESULTS 
To validate the simulation, a 36-slot, 12-pole machine with a 
continuous skew of 9° was measured. The comparison for a 
run-up of the machine from 0 to 5000 RPM shows a good 
accordance between simulation and measurement (fig. 6, 7).  

The fundamental wave (order 1) is clearly visible at the 
bottom of the logarithmic plot with the next highest harmonic 
being about factor 10-1.5 less. Due to the lack of uncertainties 
from the measurement and production deviations (geometric 
shape, anisotropic material behavior, varying permanent 
magnet remanence, etc.) the simulation in general displays a 
lot more distinguishable higher harmonics, which merge into 
each other in the Campbell diagram of the measurement. For a 
healthy machine harmonics of the orders 5, 7, 11, 13 (and an 
infinite number of higher order harmonics with decreasing 
amplitude) are expected. These orders are visible in both 
measurement and simulation, especially at lower frequencies, 
as marked in fig. 6 and fig. 7. The main harmonics of the PWM 
at double the PWM frequency of 4 kHz are also visible, as well 
as a broad range of PWM harmonics originating from 4 kHz 
and 8 kHz (at zero speed). 

In the simulation (fig. 7) the even machine harmonics of 
order 2, 4, 8 and 10 do exist, of which only order 2 can be 
found in the measurement. The most likely explanation for this 
are non-ideal effects like dynamic eccentricity and 
magnetization deviations, which the model does not take into 
account. In addition, the ideal IGBTs (perfect switches) as 
opposed to real IGBTs with finite current and voltage rise and 
fall times can lead to some differences. In section IV. C it is 
shown that the PWM is the main origin of current harmonics. 
Additional to the results presented in section IV. C simulations 
with different PWM frequencies show significantly different 
harmonic orders present. This indicates that the current is very 
sensible to changes of power electronics parameters. However, 
in the measurement (fig. 6) and the simulation (fig. 7) the same 
PWM frequency was used, which suggests that other power 
electronics parameters not present in the model do influence 
the current harmonics.  

In the spectrogram of the measurement order 3 is visible 
which cancels out in case of an ideal machine, which can be 
easily derived from basic analytical equations. This indicates 
one or more types of production deviations in the measured 

machine like static/dynamic eccentricity. Further studies are 
necessary for an identification and separation.  

A.   Skew 
To analyze the influence of skew in detail and to quantify 

the discretization error due to the multislice approach 
simulations with different amounts of slices have been carried 
out. Fig. 8 shows fourier transforms of one phase current at a 
constant speed of 625 RPM equal to 62.5 Hz fundamental 
frequency. In fig. 8 (a) the measurement is shown, (b) is the 
simulation without skew, (c) with 6 rotor slices and (d) with 
18 rotor slices. In the case of a constant operating point the 
skew has a minor impact on current harmonics. Compared to 
the simulation without skew (b) the 6-slice case (c) shows a 
slight difference of the harmonic amplitudes. The 5th harmonic 
increases slightly while the 7th decreases, meaning a better 
accordance with the measurement where the 7th orders 
amplitude is only about 50% of the 5th. This deviation in 
amplitude is also assumed to result from production 
deviations. The amplitude of the direct PWM-induced 
frequencies at 8 kHz also slightly decreases, which are 
considerably lower in the measurement. To difference between 
the 6-slice simulation (c) and the 18-slice simulation (d) are 
barely noticeable but do lead to a significant slower execution 
due to the higher computational effort for 18 slices.  

Fig.  5  Derivative of the excitation flux ψfd with respect to the rotational 
angle γ, at the first rotational position. 
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Fig. 7  Campbell-Diagram of one phase current from simulation of a 
continuous run-up from 0 to 5000 RPM at medium load with six slices. 
Logarithmic scale relative to fundamental wave. 

Fig.  6 Campbell-Diagram of one phase current from a measured stepwise 
run-up from 0 to 5000 RPM at medium load. Logarithmic scale relative to 
fundamental wave. 
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B.   Torsional Vibrations 
To study the effect of torsional rotor vibrations a simulative 
comparison between a rigid rotor and a torsional non-stiff  
rotor is performed. The mechanical model is adjusted to a 
torsional spring system with six slices of 20mm axial length 
representing a hollow shaft rotor construction. On one side of 
the shaft an inert mass represents a load attached via another 
torsional spring. A simulated run-up over 30 seconds from 0 
to 5000 RPM shows multiple torsional rotor eigenmodes 
whose eigenfrequencies depend on the masses and torsional 
stiffness. Compared to a rigid rotor these oscillations led to 
additional harmonics in the current. This can be observed in 
fig. 9 of the rigid rotor run-up in comparison with fig. 10, 
where the additional harmonics are marked. The harmonics 
have a base frequency of 2 kHz indicating a connection to the 
PWM of 4 kHz. 

C.   Influence of PWM and controller 
The model allows in-depth analysis of different influencing 
parameters which cannot be directly tested in practice. The 
obtained results of the skew and torsion influence show a 
minor direct dependency, while in case of torsional vibrations 
fractions of the PWM frequency occur as current harmonics. 
To determine the general impact of the PWM and controller 
frequency the results of additional simulations are shown in 

fig. 11 and fig. 12. For fig. 11 the power electronics is 
bypassed, effectively allowing the controller to directly set 
voltages to the electrical machine model without time delay. 
This leads to a great decrease of harmonics as the controller is 
able to nearly ideally maintain the dq-currents constant. Only 
the lowest machine harmonic orders are observable with low 
amplitude, which eventually with adjusted controller settings 
could be completely reduced to zero. This simulative 
experiment proves that the primary origin of current harmonics 
is the power electronic with the PWM.  
 Since the set point voltages for the PWM result from the 
controller, the dependency between controller clock (the 
frequency at which new target voltages are computed) and 
current harmonics is examined. In fig. 12 different current 
harmonics are shown for different controller clock speeds at a 
fixed operating point at 4424 RPM. The PWM frequency was 
kept constant at 4 kHz. Fig. 12 (a) shows the result for a 
controller clock of 4 kHz. For ideal dead time compensation 
there are only minimal changes if multiples of the PWM 
frequency are used. Fig. 12 (b) shows results for a controller 
clock of 6 kHz as 3/2 of the PWM frequency and (c) for the 
odd number of 11 kHz. While the main machine harmonics 
(5,7,11,13) are still visible as well as the directly PWM 

Fig.  9  Campbell-Diagram of one phase current from simulation of a 
continuous run-up from 0 to 5000 RPM at medium load with six slices. 
Logarithmic scale relative to fundamental wave. Rigid rotor. 

Fig.  10  Campbell-Diagram of one phase current from simulation of a 
continuous run-up from 0 to 5000 RPM at medium load with six slices. 
Logarithmic scale relative to fundamental wave. Torsional soft rotor showing 
oscillations leading to marked current harmonics. 
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Fig.  8 Fourier transform of one phase current at a fundamental frequency 
of 62.5 Hz resp. 625 RPM. a) Measurement. b) Simulation without multislice. 
c) Six slices. d) 18 slices. 
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induced harmonics below and above 4 kHz a great number of 
additional harmonics can be observed. Matching the controller 
frequency to a multiple of the PWM frequency can greatly 
reduce the current harmonics.  

V.   CONCLUSION 
In this paper a two-axis machine model of a PMSM capable of 
describing saturation, cross-coupling and slotting effects is 
studied and extended to support the multislice method as 
approximation of skewing and rotor torsion. The mathematical 
basis is presented and the model applied on a small traction 
drive. The method of parameter extraction from the FEA is 
presented in with regard to possible discretization errors. 
Validation of the model is performed comparing the fourier 
transformed phase currents to measurements from the machine 
which shows good accordance as the main harmonics are 
represented in the model. From differences in occurring 
harmonics between simulation of ideal machine and 
measurement a production deviation like eccentricity can be 
concluded, which makes an extension of the model to 
represent different production deviations seem promising. The 
model is further used to show the impact of skew and torsional 

vibrations. The representation of skew via multiple slices leads 
to a minor improvement of current harmonics compared to 
measurement, while torsional oscillations cause additional 
harmonics related to the PWM frequency. Additional 
simulations with the proposed model show a dominant 
dependency between PWM, controller frequency and phase 
current harmonics. 
 With the proposed model relatively fast repeated 
simulations are possible allowing a broad spectrum of different 
analyses regarding phase current, torque and force harmonics 
of machines with skew and torsional non-stiff rotor for a 
deeper understanding of acoustic machine behavior. 
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Fig.  12  Fourier transform of one phase current at a fundamental frequency 
of 442.4 Hz resp. 4424 RPM with PWM frequency at 4 kHz.  
(a) Controller clock at 4 kHz.   (b) Controller clock at 6 kHz.  
(c) Controller clock at 11 kHz. 
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Fig.  11  Fourier transform of one phase current at a fundamental frequency 
of 442.4 Hz. Directly controlled machine without PWM. 
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