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A B S T R A C T

Non-oriented soft magnetic materials are commonly assumed to be magnetically isotropic. However, due to the
rolling process a preferred direction exists along the rolling direction. This uniaxial magnetic anisotropy, and
the related magnetostriction effect, are critical to the accurate calculation of iron losses and magnetic forces in
rotating electrical machines. This paper proposes an extension of an isotropic energy-based vector hysteresis
model to account for these two effects.

1. Introduction

Non-oriented soft magnetic materials are widely used as a basic
constituent in rotating electrical machines. Although their qualification
seems to indicate them to be magnetically isotropic, they exhibit
actually, due to the rolling process, a magnetically preferred direction
that leads to anisotropy in both the magnetic and elastic behavior [1]. A
variety of vector hysteresis models have been developed to simulate the
magnetization process under rotational field. Many of them are vector
extension of well-established uniaxial scalar models; the vectorization
being realized by superposition of a number of scalar models oriented
over different directions [2–4]. In contrast, the model presented in this
paper builds on an isotropic energy-based vector hysteresis model [5–
7], which is inherently a vector model and offers readily a complete
theoretical framework to include magnetic anisotropy, magnetostric-
tion, and characteristic features of magnetic hysteresis such as the
wiping-out property or rotational hysteresis.

2. Energy-based ferromagnetic material model

The proposed model builds on the thermodynamic representation
of hysteresis proposed in [5–8] and gets some inspiration from the
kinematic hardening theory of plasticity discussed in [9–11].

2.1. Magnetic state variables

To appropriately account for the susceptibility of empty space, the
magnetic flux density b is represented as a sum of two components (1):
an empty space magnetic polarization J0=µ0h (with µ0 the magnetic
permeability of vacuum), which is always present, and a material

magnetic polarization J, associated with the presence of microscopic
moments attached to the atoms of a material body.

b J J= +0 (1)

2.2. Energy conservation

The ferromagnetic material model follows from the expression of
the conservation of energy in the material

U Dh b⋅ ̇ = ̇ + (2)

where U is the internal energy density, h b⋅ ̇ the rate of magnetic work,
and D≥0 a non-negative dissipation functional. Note that the terms of
the energy conservation equation have actually the dimension of
power.

2.3. Internal energy and anhysteretic saturation

The internal energy U is a function of the state variables of the
system and is composed of two terms. The first term depends on J0 and
accounts for the energy of empty space. The second term u(J, …)
accounts for the energy stored in matter and depends on J and possibly
on other nonmagnetic state variables (strain, entropy,…). The variation
in time of the internal energy, holding non-magnetic state variables
constant, writes

U
μ

u
J

J J J˙ = ⋅˙ + ∂ ( , ...)⋅˙ .J
0

0
0

(3)

The second term can be regarded as the power delivered to the state
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variable J by a magnetic field hr called reversible magnetic field. The
anhysteretic saturation curve of the material is the 1-1 relationship
between the (dual) quantities hr and J. This material characteristic and
its inverse are noted

uh J J J h= ∂ ( , ...), = ( )r rJ an (4)

Here, Jan the anhysteretic magnetization curve, which is scalar and
one-to-one. Experiments show that the anhysteretic curve can be
represented accurately with a double Langevin function, although it
cannot be given easily a theoretical ground with the statistical
approach. In consequence, we shall not regard the double Langevin
representation as a fundamental aspect of the energy based hysteresis
model, but rather use it as a convenient tool to accurately represent the
anhysteretic curve with a smooth easily differentiable function.
Practically, in the saturable isotropic case, the vectors J and hr are
collinear and the characteristics (4) are written in terms of a scalar
magnetic reluctivity ν(J) and a scalar magnetic permeability µ(h) as

ν μh J J J h h= ( ) , = ( )r r r (5)

2.4. Magnetic hysteresis

Magnetic hysteresis can be brought into the model in terms of the
mechanical analogy depicted in Fig. 1. The pinning force that opposes
the motion of Bloch walls in the ferromagnetic material is the
analogous of the dry friction force represented by the slider, and the
corresponding non-negative dissipation functional writes

D κ J h J= ˙ = ⋅˙i (6)

with κ in A/m a material characteristic called pinning field ( Fig. 1). We
require the dissipation D to be the power delivered by a magnetic field
hi called irreversible magnetic field, as the magnetic polarization J
varies in time. There is no dissipation in empty space associated with
the variation of J0. The algebraic expression of hi is not straightfor-
wardly derived from the definition (6). The functional κ J̇ is indeed not
differentiable at J̇ = 0, and one is therefore not allowed to simply write

Dh = ∂i J̇ . The functional is nonetheless convex, and one resorts to the
concept of subgradient, a generalization of the concept of gradient valid
for convex functionals. One writes

Dh ∈ ∂i J̇ (7)

where the set

D κ

κ

h h J

h J

∂ = { , ≤ if˙ = 0,

= if˙ ≠ 0}.
i i

i

J
J
J

˙
˙
˙

Energy conservation can now be rewritten into the identity

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟μ

h
J

J h h h J− ⋅˙ + ( − − )⋅˙ = 0,r i
0

0
0

(8)

that must hold for arbitrary J̇0 and, hence a definition for J0: J0=µ0h
and the nonlinear differential equation in J (9) to be solved at each
time step.

u Dh J−∂ ( , ...) ∈ ∂J J̇ (9)

This at first sight obscure differential equation can be given a clear
pictorial representation, Fig. 2 (isotropic case) The grey sphere centred
at hr is the representation of the subgradient. Starting from the
situation depicted in Fig. 2, if the tip of applied magnetic field h enters
the sphere, one has κh h h= − ≤i r and the reversible magnetic
component hr is unmodified, and hence J̇ = 0, since hr and J are in
a 1-1 relationship. Both quantities remain unmodified as long as the tip
of h remains inside the sphere. If now h tends to reach out of the
sphere, which is forbidden by the inclusion condition in (9), the sphere
must be shifted. In this case, one has , and an evolution equation for J:

u κh J J
J

= ∂ ( , ...) +
˙
˙J (10)

In a real material, the pinning field κ cannot be represented by a
single constant. An accurate hysteresis model requires considering a
distribution of pinning fields, the characteristics of which vary largely
across the different types of soft ferromagnetic materials [12]. We show
first how to account for this distribution in the theory, leaving it for Ref.
[12] to discuss how it can be identified from measurements. In order to
describe hysteresis, the soft magnetic material is regarded as a set of
independent abstract domains, called pinning domains, characterized
each by a particular value κk of the pinning force (Fig. 3). Let ωk, a
partition of unity ∑k ωk=1, be the probability that a magnetic moment
in the material belongs to the domain with pinning field κk, of which
the magnetic state is described by a magnetic polarization Jk. One has
b=J0+∑k Jk, and the energy density of the material, and its time
derivative (holding all nonmagnetic state variables constant), write
respectively

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠U ω u U J h J= + ∑ , ... , ˙ = ⋅˙ + ∑ , ... ⋅˙

μ k
k

ω μ r ω

kJ J J J
2 0 k

k

k

k

k
0

2

0

0

0 (11)

in terms of the state variables Jk. The dissipation functional, on the
other hand, is the algebraic sum of the dissipation in the different
domains

∑ ∑D κ DJ h J h= ˙ = ⋅˙ with ∈ ∂
k

k k

k
i
k k

i
k

J̇k
(12)

and
Fig. 1. Lumped parameter mechanical analogy for magnetic hysteresis as a nonlinear
spring in parallel with a slider.

Fig. 2. Graphical representation of the vector equation h=hr+hi in the isotropic case.
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(13)

These terms can now be summed up to obtain the relationship

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟μ ω

h J h h J h J J−
J

⋅ ̇ + − − ( ) ⋅ ̇ = 0,r

k

i
k k k0

0
0 k

(14)

which must hold for arbitrary J̇k
, hence the nonlinear differential

equation in Jk

⎛
⎝⎜

⎞
⎠⎟ω

Dh h J− ∈ ∂r

k

k J̇k
(15)

to be solved at each time step in each domain.

3. Magnetic anisotropy

Soft magnetic steel laminations produced by a rolling process have
a crystallographic texture in which the crystals have a preferred
orientation. Such materials exhibit at the macroscopic scale a uni-axial
kind of anisotropy for which the rolling direction (RD) must be
distinguished for the transverse directions (TD) [13]. We want to
adapt the material model for such materials and seek for an imple-
mentation consistent from the point of view of both geometry and
energy conservation.Macroscopic anisotropy has an effect on both the
coercive field and the anhysteretic curve. The latter can be accounted
for by replacing the scalar magnetic reluctivity ν(J) with a tensorial
magnetic reluctivity ν(J)G(γ) where the tensor (the undotted product
of vectors ab is the dyadic product)

G γ γe e e e( ) = +|| ||
2

⊥ ⊥ (16)

is defined as a function of a scalar parameter γ, γ > 1, and the micro-
structure-anchored unit vectors e|| and e⊥ in rolling and transverse
direction respectively (they are unitary in the reference configuration).
Hence, the anisotropic version of the saturation law (4), (5) writes

Gν γh J J= ( ) ( )r (17)

G G Gγ μ γ γJ J h h h= ( ( ) ) = ( ( ) ) ( )r r ran
−1 −1 −1 (18)

On the other hand, the effect of magnetic anisotropy on the
coercivity of the material is represented in the hysteresis model by
flattening the spheres of the isotropic model in RD, Fig. 4. The scalar
pinning force κk does not become a tensor, however, because the
magnetic field hi must by definition remain collinear with the variation
of the magnetic polarization J̇. Anisotropy is represented by having the
pinning force κk be a function of the angle between J̇ and e||, e.g.,

κ α γ κ γ α( , ′) = (1 + ( ′ − 1) (1− ))k
RD
k 2 (19)

where α J e= ̇⋅ || is the direction cosine of J̇ in rolling direction if J̇ ≠ 0,
else α h e= ⋅i ||. The anisotropic extension of the material model (15)
writes thus

⎛
⎝⎜

⎞
⎠⎟Gν

ω
γ

ω
Dh J J− ( ) ∈ ∂ , with

k

k

k

Jk ̇k
(20)

D κ γ
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h J e J
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It is sufficient for the anisotropic extension of the material model to
identify the scalar parameters γ and γ'. More involved expressions of
(16) and (19) with more parameters, or additional unit vectors
associated with other significant directions of easy magnetization, can
be used if needed, and if there is enough experimental data to identify
them. As we are dealing here with the uniaxial anisotropy of standard
electric steel laminations, we proceed with anisotropy represented by
just these two scalar parameters. Finally, it must be noted that the
governing equation of the differential model only involves the gradient
and the subgradient of the energy functionals describing the material.
Those gradients are the constitutive relationships of the material, and
they can be identified in principle from measurements of the physical
quantities b and h of the system.

The functionals u and D, on the other hand, are not directly
measurable. They are obtained by an appropriate integration of the
measured (sub)gradients in the state space of the material. This extra
integration step might however be quite tedious in practice or even
impossible analytically. A variational approach to solve the problem is
therefore impossible in many cases, especially when the complexity of
the material model increases, whereas the differential approach is
always available.

Fig. 3. Pictorial representation of the model with N internal variables.

Fig. 4. Graphical representation of the vector equation h=hr+hi in the anisotropic case.
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4. Implementation

First of all, the vector quantity
⎛
⎝⎜

⎞
⎠⎟hr ω

Jk

k must be recorded in each

pinning domain to account for the memory effect. Let thus hrp
k be the

value of
⎛
⎝⎜

⎞
⎠⎟hr ω

Jk

k at the previous time step. In order to solve (20) in the

pinning domain k, it is useful to define the auxiliary quantities,
⎛
⎝⎜

⎞
⎠⎟G γx h: = ( ) r ω

J−1 k

k and G γx h: = ( )p rp
k−1 in terms of which the variation

of the magnetic polarization can be linearized as

I

μ

μ μ μ

x x x

x x xx x x x

= ∂ J ( ) = ∂ { ( ) }
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and then, at first order,
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≈
( ) ( − )

( ) ( − )
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k
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p p

∂

∂

∂

∂
(21)

with xp the value of x at the previous time step. The nonlinear
differential Eq. (21) can then be solved by the following procedure.
Let h be the value of the applied magnetic field at time t. The pinning
domains are considered one after the other. If

κ γh h h h e− ≤ (( − )⋅ , ′)rp
k k

rp
k

|| , the magnetic state of the domain is left

unmodified by the new value of h, i.e., J̇k
=0, and one has simply x=xp.

Otherwise, J̇ ≠ 0k
, and the updated value of x is obtained by solving the

nonlinear implicit differential equation in x

G γ κ γ
μ

μ
h x J e

x x x
x x x

= ( ) + (˙⋅ , ′)
( ) ( − )

( ) ( − )
,k p p

p p
||

∂

∂
(22)

which can be solved efficiently with a bracketing root finding method.

5. Application

The materials under study, referenced as M235-35A and M400-
50A, are non-oriented FeSi steel lamination with 3.2% and 2.4% Si of
thickness of 0.35 mm and 0.5 mm, respectively. The measurements are
done under standardized Epstein frame protocols. Epstein frames are
measurement apparatus utilizing the field-metric method under sinu-
soidal magnetic flux densities. They are equipped with different
number of primary and secondary windings for different frequency
ranges. Quasi-static material characteristics, on the other hand, are
identified by point-by-point DC-measurements using a flux-meter. The
covered magnetic flux density range is 0.1–1.5 T. The Epstein frame
used in this study has 24 stripes (of dimension 280 mm × 30 mm).
Model parameters are identified according to the methodologies
described in [7,12]. Comparisons of the anisotropic model with
measurements of the two materials are presented in Figs. 5–8. It is
apparent that the anisotropy effects can be described by the two
parameters, in particular the effect on the virgin curves. A disagree-
ment between the measured and the modelled hysteresis loops indeed
exists, especially around the reversal points. This is an accepted
limitation of our energy-based hysteresis model, which could be raised
by using a more complex cell description. This is however beyond the
scope of this paper devoted to the specific representation of anisotropy
effects.

6. Conclusion

The motivation for this work is the development of constitutive
models for hysteresis phenomena accounting for the magnetic aniso-
tropy in textured non-oriented electrical steel sheets. The proposed
model, based on thermodynamic principles, is energy-consistent. A
practical implicit update rule exists. Besides mathematical and physical

elegance, this model has practical advantages. It is readily vectorial and
the number of parameters is not limited. Moreover, it relies on an
energy balance, of which the stored magnetic energy and dissipated
energy are known at all times. With this approach, hysteresis losses,
accounting for vector effects (rotating hysteresis) and the presence of
higher harmonics, can be evaluated with controllable accuracy. This
opens up the possibility of accurate evaluations of magnetic losses in
real-life electrical engineering devices: From the prediction of iron
losses in electrical engineering devices (rotating machines, actuators,
brakes) to the accurate modeling of hysteresis in magnetostrictive

Fig. 5. Comparison of simulated (dotted lines) and measured (continuous lines) quasi-
static virgin curves of M235-35A in rolling and transversal direction.

Fig. 6. Comparison of simulated (dashed lines) and measured (continuous lines) quasi-
static hysteresis loops of M235-35A in rolling (0°) direction. The inset depicts the
obtained loops using a logarithmic scale of the abscissa.

Fig. 7. Comparison of simulated (dashed lines) and measured (continuous lines) quasi-
static hysteresis loops of M235-35A in transversal direction. The inset depicts the
obtained loops using a logarithmic scale of the abscissa.
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actuators and smart materials. The hysteresis model proposed in this
paper represents a significant improvement with respect to conven-
tional post-processing techniques based on measured loss character-
istics. Because it relies on a physical assumption that it is vectorial from
the beginning (the analogy with a dry friction force), the identified
parameters represent the material in general, and not under specific
experimental conditions. In other words, although the identification
was done with experimental data assuming a sinusoidal in time and

unidirectional b field, the identified parameters can be used in 2D and
3D, and in the presence of higher harmonics.
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