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Abstract
Purpose – This paper aims to compare different static history-independent hysteresis models
(mathematical-, behavioural- and physical-based ones) and a history-dependent hysteresis model in terms of
parameter identification effort and accuracy.
Design/methodology/approach – The discussed models were tested for distorted-excitation
waveforms to explore their predictions of complex magnetization curves. Static hysteresis models were
evaluated by comparing the calculated andmeasured major andminor static hysteresis loops.
Findings – The analysis shows that the resulting accuracy of the different hysteresis models is strongly
dependent on the excitation waveform, i.e. smooth excitations, distorted flux waveforms, transients or steady-
state regimes. Obtained results show significant differences between predictions of discussed static hysteresis
models.
Research limitations/implications – The general aim was to identify the models on a very basic and
limited set of measured data, i.e. if possible using only the measured major static loop of the material. The
quasi-static major hysteresis loop was measured at Bmax = 1.5 T.
Practical/implications – The presented analysis allows selection of the most-suited hysteresis model for
the sought-for application and appraisal of the individual limitations.
Originality/value – The presented analysis shows differences in intrinsic mechanisms to predict
magnetization curves of the majority of the well-known static hysteresis models. The results are essential
when selecting themost-suited hysteresis model for a specific application.
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Paper type Research paper

1. Introduction
Accurate modelling of soft magnetic hysteresis loops for arbitrary excitation regimes is
essential in applied engineering. Adequate prediction of dynamic magnetization curves and
power losses is critical for the improvement and design of various electromagnetic energy
converters. The static description of the hysteresis phenomena in soft magnetic steel
sheets, i.e. the static hysteresis model, is decisive for the accurate prediction of dynamic
magnetization curves and iron losses (Steentjes et al., 2016a, 2016b). Most engineering
applications require the extension of a static hysteresis model by adding phenomenological
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and empirical dynamic terms, where different modelling approaches were developed. The
prediction of extended dynamic models, however, is heavily dependent on the used static
hysteresis model (Petrun et al., 2015a, 2015b, 2015c; Steentjes et al., 2016a, 2016b). In
particular, for arbitrary magnetization regimes, it is essential that the static hysteresis
model reflects the physical behaviour of the magnetization process as accurate as possible.

The development of static hysteresis models started almost a century ago. However, the
complex underlying physical mechanisms and the generally conflicting demands regarding
accuracy, simplicity and physical behaviour led to numerous different modelling approaches.
For engineering applications, the major driving forces are the ability to describe the various
static hysteresis curves and to determine related energy loss due tomagnetization processes.

Initially magnetic hysteresis loops were modelled using mathematical models, which
allow for a mathematical description of measured data and reproduce the measured
magnetization curves accurately, but ignore underlying physics of the magnetic material
behaviour. Such models instead rely on empirical techniques involving identification of their
parameters by using a huge amount of measured data. Representatives of this group are, for
example, the well-known Preisach model (Bi et al., 2014) and its successors or the Stop and
Play models (Matsuo and Shimasaki, 2008; Matsuo et al., 2003). These models, however,
have a limited predictive capability.

Later on, physical-based models such as the energy-based hysteresis models (Henrotte
and Hameyer, 2006; Hauser, 1994) were developed. Likewise, the field-separation principle
advanced by Koltermann et al. (2000) can be identified with the aforementioned descriptions
of magnetic hysteresis. These energy-based descriptions obtain the hysteresis loop branches
by the introduction of an offset along theH-axis. The advantage of these models is that they
are consistent with the laws of irreversible thermodynamics. This is particularly interesting
for engineers, who need reliable hysteresis models based on sound physical grounds.

One of the most cited and used model is the Jiles–Atherton (J-A) model (Jiles and Atherton,
1986; Hauser et al., 2009). The popularity of this model for engineering applications increased
largely because of specific advantages such as relatively small number of parameters and good
computational performance. However, for the J-A model, there remains the shortcoming with
the identification of themodel’s parameter and its stability (Zirka et al., 2012). Particularly when
modelling distorted and irregular hysteresis loops, the deviation between modelled and
measured loops is often not adequate (Benabou et al., 2008; Steentjes et al., 2016a, 2016b).

As an alternative to the aforementioned models, transplantation-type hysteresis models
were proposed. Such models are based directly on measured major loops and/or first-order
reversal curves and are good candidates for use in applied engineering. In this group, the best
known are the Zirka–Moroz (Z-M) hysteresis models, which are developed both in history-
independent and history-dependent versions (Zirka et al., 2014). The history-dependent version
has a significant advantage over history-independent model, in particular for applications with
complex magnetization curves such as pulse-width modulation (PWM)-like excitation
waveforms in modern power electronics fed converters. The inclusion of the memory property
can lead to physically correct magnetization curve predictions, but at the expense of the
simplicity of the model. Amongst the transplantation-type models also, the Tellinen (TLN)
hysteresis model can be considered (Tellinen, 1998; Talukdar and Bailey, 1976; Faiz and Saffari,
2010). Because of its promising blend of simple use, identification and implementation along
with reasonable predictions, it is also a good candidate for engineering use.

Large amounts of developed hysteresis models lead to many possible choices for individual
engineering applications. Despite all the hysteresis models that try to predict the same
phenomena, they do this by using completely different approaches. Consequently, their internal
mechanisms to predict intrinsic magnetization curves, that is, their predictive powers, differ
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significantly despite similar prediction of major loops. The aim of this paper is to provide a
comprehensive analysis and comparison of most popular static hysteresis models in terms of
identification, implementation, computational performance and accuracy (predictive power).

2. Hysteresis models
The application of individual models in general depends on their complexity, accuracy and
other properties. In this paper, the so-called primal or inverse versions of the discussed static
hysteresis models are evaluated, where the time-dependent magnetic flux density B(t) or its
change rate dB

dt ðtÞ plays the role of the independent variable. In this form, the hysteresis
models enable straightforward implementation in various lamination models that resolve
the coupling of non-local eddy currents and magnetic hysteresis, such as the finite element
models (FEM) or the parametric magneto-dynamic (PMD) models (Steentjes et al., 2016a,
2016b; Petrun et al., 2014a, 2014b, 2015a, 2015b, 2015c). In this paper, popular and promising
representatives from discussed hysteresis models are evaluated, namely, the J-A hysteresis
model (Jiles and Atherton, 1986), the Z-M hysteresis model (Zirka et al., 2012), the GRUCAD
hysteresis model (Koltermann et al., 2000), the history-independent version of the Z-Mmodel
(Zirka et al., 2014, the TLN hysteresis model (Tellinen, 1998), the Stop model (Matsuo et al.,
2003; Matsuo and Shimasaki, 2008) and the energy-based dry friction-like Play model
(Henrotte et al., 2014; Steentjes et al., 2014a, 2014b).

2.1 Jiles–Atherton hysteresis model
The inverse J-A hysteresis model formulation (Vaseghi et al., 2013) is based around the main
ordinary differential equation (1):

dM
dB

¼
dM Man �Mð Þ þ d ck

dMan

dHe

m 0 d kþ 1� að Þ dM Man �Mð Þ þ d ck
dMan

dHe

� �� � (1)

where the complementary relationships of equations (2)-(6) apply. Man is the anhysteretic
magnetization that is described by using the Langevin functionL (x) by (2):

Man ¼ MsL He

a

� �
¼ Ms coth

He

a
� a
He

� �
(2)

The term dMan
dHe

in equation (1) is obtained by deriving equation (2) with respect to the so-
called effective fieldHe (3):

He ¼ H þ aM (3)

where the derivative of the Langevin functionL0 (x) in (4) is applied:

dMan

dHe
¼ Ms

a
L0 He

a

� �
¼ Ms

a
1� coth 2 He

a
þ a

He

� �2
" #

(4)

To adjust the hysteresis loop shape of the J-A model, parameters a, a, Ms, c and k in
equations (1)-(4) have to be identified adequately. Moreover, d represents a directional
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variable that corresponds to the sign of the derivative dB
dt , i.e. d = 1 when B is increasing and

d =�1 when B is decreasing.
To avoid the unphysical behaviour of the original J-A description, an additional control

variable dM in equation (1) is introduced by equation (5). This variable prevents negative dM
dH

slopes after a field reversal that could appear in the original J-A description (Lederer et al.,
1999; Miljavec and Zidari, 2008):

dM ¼ 1
2
þ 1
2
sign Man �Mð Þ dB

dt

� �
(5)

The output of the J-A model is the magnetic field H, which can be obtained by using time-
integration of equation (6):

dH
dt

¼ 1
m 0

dB
dt

� dM
dt

(6)

2.2 GRUCAD hysteresis model
The GRUCAD group modified the J-A model in such a way that the modified model
description uses the concept of an anhysteretic curve (truly reversible in the thermodynamic
sense) as the basis (Koltermann et al., 2000). In contrast to the J-A model, the total field
strength H is composed as the sum of the anhysteretic magnetic field Han and hysteretic
magnetic field Hh components using equation (7). Thereby, the source of problems
originating in the assumption that total magnetization could be split into the reversible and
the irreversible component is bypassed:

dH
dt

¼ dHan

dt
þ dHh

dt
(7)

To obtain a system of ordinary differential equations (ODEs) for direct time-dependent
integration,Han is determined by solving equation (8):

dHan

dB
¼ aan � aan Mans L0

l anð Þ
m 0 aan þMans 1� aanð ÞL0

l anð Þ
� � (8)

where lan is defined by equation (9):

lan ¼ 1
aan

1� aanð ÞHan þ aan
B
m 0

� �
(9)

The ODE representing the hysteretic component of the field is given by equation (10):

dHh

dB
¼ HhsL l hð Þ � Hh

d g h
(10)

where lh is defined by equation (11), and the control variable d is analogous to the J-A
model description:

lh ¼ 1
ah

Hh þ dHhs½ � (11)
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Similar to the J-A model, in this model also, the Langevin function L0(x) and its derivative
L0(x) are applied. However, the significant difference is that in the GRUCAD model, the
anhysteretic and hysteretic components can be adjusted separately. The anhysteretic part is
shaped by adequately determining the aan, aan and Mans model parameters, whereas
parameter gh, ah and Hhs determine the hysteretic field in the model (Steentjes et al., 2014a,
2014b). This decomposition is advantageous, as it enables physical-based parameter
identification (Steentjes et al., 2016a, 2016b).

2.3 Stop hysteresis model
In contrast to the aforementioned models, the Stop hysteresis model is a purely
mathematical model. It is based on the Stop hysteron (Matsuo and Shimasaki, 2008; Matsuo
et al., 2003). The scalar Stop model in the discretized form describes a hysteretic relation
H(B) by equation (12):

HðBÞ ¼
XNh

m¼1

gmðsmðBÞÞ (12)

whereNh is the number of hysteron operators, sm is themth Stop hysteron operator and gm is
themth shape function m ¼ 1; . . . ;Nhð Þ of the model.

Stop operators are defined by equation (13), where B0 and s0m are the values of B and sm at
the previous moment in time, respectively, and hm is a constant:

sm Bð Þ ¼ max
�
min

�
B� B0 þ s0m; hm

	
;�hm

�
(13)

For an adequate hysteresis description, various shape functions can be applied in general.
The simplest are, e.g. piece-wise linear (PWL) shape functions, where the constants can be
set to hm ¼ mBs

Nh
(Matsuo et al., 2003). A section of the PWL shape function gm between two

consecutive break points sm,j�1 and sm,j sm;j�1 � s � sm;jð Þ is defined by equation (14):

gm sð Þ ¼ gm sm;j�1ð Þ þ km;j s� sm;j�1ð Þ (14)

where the mth PWL shape function has m break points j ¼ 1; . . . ;mð Þ. These breakpoints
are defined by equation (15):

sm;j ¼ �hm þ jDs ¼ �hm þ j
2Bs

Nh
(15)

and km;j ¼ gm sm;jð Þ � gm sm;j�1ð Þ½ �=Ds represent the slope of jth shape function section.
As the PWL shape functions are symmetric with respect to the origin, the starting value

gm sm;0ð Þ of the first section of the shape function is defined by gm sm;0ð Þ ¼ �gm sm;mð Þ.

2.4 Energy-based dry friction-like Play model
The energy-based vector hysteresis model, denoted as EB-Play for brevity, is based on the
analogy between the pinning effect of domain walls and the dry friction in mechanics. Based
on the first law of thermodynamics, the change in the magnetic energy stored in the system
is represented as the sum of the magnetic external work and a dissipation potential
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(Henrotte et al., 2014; Steentjes et al., 2014a, 2014b). The reversible part of the magnetic field
~H r is the derivative of the stored energy u:

~H rð~J Þ ¼ @u

@~J
(16)

Assuming an isotropic material, the vectors ~H r and~J are parallel and linked by a simple
scalar saturation curve:

~J
�
~H r

	 ¼ J an
�

~H r



	 ~H r

~H r


 (17)

with J an as the anhysteretic magnetization curve represented by the Langevin function, i.e.
J an

�

~H r


	 ¼ L�

~H r



	. The non-positive dissipation functional, on the other hand, stands
for the magnetic hysteresis losses that are due to the pinning effect of the domain walls
around defects in the material structure resembling a dry-friction force k , i.e. it is the power
delivered by the irreversible part ~H i of the magnetic field:

D ¼ �k


 _~J 

 :¼ �~H i � _~J (18)

where the dot above a symbol stands for a time derivative. This allows to write:

~H i5
@D

@
_~J
5k

_~J

 _~J 

 (19)

with the introduction of the pinning field k that is responsible for the irreversible part of the
material response. Energy conservation:

_u ¼ ~H � _~J þ D (20)

yields:

�
~H r þ ~H i � ~H

	 � _~J ! ~H r þ ~H i � ~H ¼ 0 (21)

when inserting equations (16) and (19) in equation (20).
This now implies the vector relationship ~H ¼ ~H r þ ~H i. Knowing ~H and the history of

the material, this relationship can be solved for ~H r ¼ ~H rð~H ; historyÞ. Finally, the flux
density can be written as:

~B
�
~H
	 ¼ m 0

~H þ~J
�
~H r

	
(22)

To represent the distributive nature of the pinning field, a finite number N of dry-friction-
like pseudo-particles, with each having a specific pinning force kk constitutes the net
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magnetic polarization~J5
PN

k¼1
~J
k
. The magnetic state~J

k
of a kk-region is weighted by a

valuev k being a portion of unity
PN

k51 v
k 5 1. In this regard, one has:

~J
k ¼ v k J an

�

~Hk
r



	 ~H
k
r

~Hk
r



 (23)

and:

~H
k
r þ ~H

k
i � ~H ¼ 0 (24)

In a unidirectional field, the assumption _~J
k
being parallel to _~H

k

r is justified. This allows one
to write an explicit update rule of equation (24) after discretization in time:

~H
k
r ¼ U�~H ; ~H

k
r;p

	
:¼

~H � k k
~H � ~H

k
r;p

~H � ~H
k
r;p



 if


~H � ~H

k
r;p



 � k k

~H
k
r otherwise

8>>><
>>>:

(25)

where p stands for a quantity from the previous time step. The flux density can then be
written as:

~B
�
~H ; ~H

k
r;p

	 ¼ m 0
~H þ

XN
k¼1

v k J an
�

~Hk

r



	 ~H
k
r

~Hk
r



 (26)

The energy-based hysteresis model takes the magnetic field ~H as an input field. However, to
compare it with the B-driven models previously described, the model is inverted with the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm (Nocedal and Wright, 2006). The
inverse model can be written as:

~H ¼ argmin
~H



B�~H ; ~H
k
r;p

	�~B


 (27)

2.5 Tellinen hysteresis model
The TLN model (Tellinen, 1998) is based on the major (limit) hysteresis loop, where
Bþ
lim ¼ f ðHÞ and B�

lim ¼ f ðHÞ represent non-linear functions or lookup table data sets that
adequately describe the ascending and descending branches, respectively, of the limit
hysteresis loop as a function ofH. The corresponding slopes of these functions mþ

lim ¼ f ðHÞ
and m�

lim ¼ f ðHÞ describe the permeability of both discussed branches.
Based on thematerial relations, the TLNmodel is expressed in the form of two ODEs:

dH
dB

¼ m 0 þ mþ
lim � m 0

� 	 B�
lim � B

B�
lim � Bþ

lim

" #�1

(28)

dH
dB

¼ m 0 þ m�
lim � m 0ð Þ B� Bþ

lim

B�
lim � Bþ

lim

" #�1

(29)
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where equation (28) is used when dB
dt > 0 d ¼ 1ð Þ and equation (29) is used when

dB
dt < 0 d ¼ �1ð Þ.

The advantage of the TLN model is that when the major loop is described using a
lookup table, all kinds of irregular (e.g. wasp-waisted) major loops can be modelled
perfectly without complex identification procedures, as they are based directly on
measurements. However, the mechanisms of the inner magnetization curves are still
defined (and limited) by the two ODEs (28) and (28). This limits the predictive power of
the model.

2.6 Zirka–Moroz hysteresis model
To avoid the inability of accurate modelling of irregular hysteresis loops even further,
Zirka and Moroz (1995) and Zirka et al. (2004) proposed to use behavioural (“equation-
free”) hysteresis models. The idea of such models is that they are not limited by the
mathematical and physical constraints and are therefore applicable to all types of
hysteretic behaviours. Instead, these models are (similarly to the TLN model) based on
the major hysteresis loop in the form of a lookup table data set, from which also all
reversal curves of arbitrary order are constructed (Zirka et al., 2014). Central to the
transplantation-type models is therefore the assumption of a similarity between the
trajectories of major and minor hysteresis loops.

In this paper, the Z-M history-independent model is used (Zirka et al., 2014), which
does not retain any information about the magnetization history and constructs all
internal loops based on the major loop data, i.e. all reversal curves of any order merge at
the major loop tip. Furthermore, also a history-dependent version was developed that
intrinsically offers the correct construction of the major loop and ensures the most
relevant empirical rules of Madelung such as the wiping-out property and the return-
point memory (Zirka et al., 2014).

Central to history-independent Z-M model is the distance DH between the major loop
trajectory, (i.e. ascending or descending branch), and the reversal curve at the level BP (Zirka
et al., 2014):

DHðxÞ ¼ DHRð1� bÞxe�að1�xÞ þ tDHoutðBPÞbxc (30)

whereDHout is the width of the major loop, t is a scaling factor andDHR is the field distance
of the reversal point to the right-branch of the major loop. a, b, c are constants calculated
using equations (31), (32) and x is the dimensionless quantity specifying the ratio of the
distance of the loop tip from the current level and the distance of the reversal point to the
loop tip, which is decreasing from 1 to 0:

a ¼ DBrevð7:73þ 2:76b � 28:63b 2 þ 28:36b 3Þ (31)

b ¼ 0:22ð1� bÞ; c ¼ 0:125 (32)

DBrev is the distance from the reversal point to the major loop tip and b is the dimensionless
ratio of DBrev and the height of the major loop (Zirka et al., 2014). Disadvantage of the Z-M
models is the demand of a huge measured data set to accurately identify the parameters a, b
and c. In this paper, the parameters given in the literature as representatives of a wide class
of materials are used, to allow one to use major loop data only (Zirka et al., 2014).
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3. Implementation and parameter identification
3.1 Implementation of discussed models
The models were implemented using the Matlab/Simulink simulation software. This
software package enables straightforward implementation and is popular in applied
engineering. Effective calculation is obtained by using Matlab’s variable step solver ode23tb
(TR-BDF2 method). The absolute and relative tolerances are set to 10�7.

All models can be implemented using the equations presented in Section 2. The easiest
model to implement is the TLN model because of its simple ODE structure. The TLN is
followed by the other two ODE models, namely, the J-A and the GRUCAD models, which
have slightly more complicated structures. In contrast to this, the behavioural Z-M model
cannot be expressed using only ODEs and therefore requires more effort. The EB-Play
model requires implementing an additional numerical inversion scheme of the primal
hysteresis model, as described in Section 2.4. Because of the algebraic structure and required
high number of hysterons, the implementation of the Stop model is the most cumbersome of
the discussed models.

3.2 Parameter identification constraints
For most of the hysteresis models, a suitable identification procedure is essential to achieve
adequate accuracy of the individual model. The identification procedures and their
complexity can vary significantly when comparing different models. The difficulty of
adequately identifying a model can, in general, decrease the usability of such a model in
applied engineering.

In this paper, the identification procedure was simplified as much as possible for
individual models. The general aim was to identify the models on a very basic and limited
set of measured data, i.e. if possible, using only the measured major static loop of the
material. The used material was non-oriented (NO) steel gradeM400-50A that was evaluated
using the Epstein frame within a computer-aided setup in accordance with the international
standard IEC 60404-2. The quasi-static major hysteresis loop wasmeasured atBmax = 1.5 T.

3.3 Parameter identification approaches
The discussed hysteresis models require significantly different methods of their parameter
identification. Among the discussed models, the J-A and GRUCAD models have the most
challenging identification process. To identify the five parameters of the J-A model,
optimization methods are usually applied (Chwastek and Szczyglowski, 2008). These
optimize the parameter values in such a way that the deviation between the model
prediction and measured hysteresis curve is minimized according to the used objective
function. In this paper, for this purpose, the genetic algorithm differential evolution (DE)
was used. It is worthwhile to note that all five parameters of the J-A model have to be
identified simultaneously.

A similar procedure can be applied when identifying the GRUCAD hysteresis models,
whereas six parameters are to be identified. However, the advantage of this model versus
that of the J-A description is the separation into anhysteretic and hysteretic components.
Both components are described by three parameters that can also be identified separately –
the anhysteretic part can be identified from measured anhysteretic curve, whereas the
hysteretic part is based on the hysteresis loops (Steentjes et al., 2016a, 2016b). However, to
maintain comparable identification procedure as used for the J-A model, in this paper, all
six GRUCAD parameters were identified simultaneously from the measured major loop at
Bmax = 1.5 T using DE (Steentjes et al., 2016a, 2016b).
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Identification of the mathematical Stop model is also complex; however, not in terms of
the identification method, but rather in terms of needed input measured data for
identification. To obtain good accuracy of the Stop model, a relative high number of
hysterons Nh is needed, as Nh is linked with the discretization of the modelled hysteresis
loops. When, e.g. Nh is low, the accuracy in the saturation and minor loop regions can
quickly become insufficient. Connected to Nh is on the other side also the amount of
measured data that are required for identification purposes. Higher Nh requires extended
measurements ofNh symmetric minor loops for adequate identification (Matsuo et al., 2003).
It is obvious that this model violates the identification constraints set in previous subsection.
However, this represents the simplest identification for this hysteresis model and is for
comparison purposes discussed in this paper regardless of this violation.

The EB-Play model is similarly discretized as the Stop model into several cells that
enable increasing the accuracy (and obviously complexity) of the model. The main
difference between those models is however that the EB-Play model is based on sound
physical background. This enables different approaches to identify the model. One of the
simplest approaches is to identify the model based only on the anhysteretic curve, coercive
field Hc and descending branch of the major loop. In this way, the EB-Play model was also
identified in this paper.

In contrast to previously discussed models, the TLN and Z-M models require the easiest
identification, assuming the measured major loop is available. For both models, the
measured data set can be used directly as a lookup table in the model. The main difference
between the TLN and Z-M models is that the intrinsic reversal curves of the TLN model
are fixed with equations (28) and (29). The Z-M model offers more degrees of freedom to
shape the intrinsic reversal curves using parameters in equations (31) and (32). For adequate
identification of those parameters, however, extended measurements of minor loops are
needed. This represents a more advanced identification approach that is avoided in this
paper. Instead the recommended values from Zirka et al. (2014) are applied. These values
should be valid for various NO steel sheets.

4. Results
The discussed models were tested for distorted excitation waveforms to explore their
predictions of complex magnetization curves. Static hysteresis models were evaluated by
comparing the calculated and measured major and minor static hysteresis loops for the NO
steel grade M400-50A. The data of the evaluated NO soft magnetic steel sheets and
experimental setup are presented by Petrun et al. (2014a, 2014b, 2015a, 2015b, 2015c).

Sinusoidal excitation waveforms with superimposed higher harmonics are applied to
obtain reference measured loops with complex magnetization curves. The frequency of the
fundamental wave was f = 3 Hz to minimize the dynamic effects caused by induced eddy
currents. The fundamental waveform was distorted using fifth harmonic component of
different amplitudes with phase angle 90

�
in respect to the fundamental component.

In Figures 1 and 2, the results for added fifth harmonic component of amplitude 0.3
relative to the fundamental atBmax = 1.0 T andBmax = 1.5 T are shown, respectively.

Obtained results show significant differences between predictions of discussed static
hysteresis models. Larger differences between models are obtained when comparing minor
loops in Figures 1 and 2. Such results are expected, as the models have significantly
different mechanisms to predict complex magnetization trajectories. It is worthwhile to note
that the used hysteresis models were identified using only the major loop and were not
optimized based onminor loops.
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The results in Figure 1 show some interesting limitations of the discussed models. The most
surprising results were obtained using the J-A, TLN and Z-M models in Figure 1 (a), (c) and
(d), respectively; when predicting the smaller minor loop at the ascending branch, those
models did not predict a minor loop at all. After field reversal, the magnetization curves of
these models continued without crossing the previous magnetization curve, and hence the
observed minor loop is not closed [similar to results in (Benabou et al., 2008)]. The inability

Figure 1.
Comparison of static
hysteresis loops using
sinusoidal excitation
with superimposed
fifth harmonic
component of
amplitude 0.3 relative
to the fundamental at
Bmax = 1.0 T
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of these models to predict the minor loop correctly has a direct impact on the models’ prediction
of magnetization curves after the minor loop. Corresponding ascending trajectories had big
deviation versus measurements. The biggest deviation was obtained using the TLN model
[Figure 1 (c)], where the ascending branch was far off but nonetheless parallel to the measured
curve. The ascending curves after the minor loop of the J-A and Z-M models start with a big

Figure 2.
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deviation but are approaching themeasured curve at the major loop tip. The convergence of the
predicted curve of the Z-M model could be potentially further improved by adjusting model
parameters of equations (31) and (32). Comparing the predictions at the descending major
branch, these three models also underestimate the bigger minor loop.

In contrast to this, the GRUCAD, Stop and EB-Play models close the loops in a more
physically adequate manner. However, the GRUCAD model predicts minor loops that are
significantly overestimated [Figure 1 (b)]. This could be a result of oversimplified parameter
identification of the GRUCAD model. The hysteretic parameters of this model could be
potentially improved. This requires, however, extended measurements and is therefore out
of the scope of this paper. The Stop model, on the other hand, predicts significantly
underestimated minor loops [Figure 1 (e)]. The most reasonable results were obtained using
the EB-Play model [Figure 1 (f)] despite the simplified parameter identification. It is
worthwhile to note that in both predictions of the Stop and EB-Play model, the discretization
of both models is visible [Figures 1 (e) and (f)]. These two models enable to adjust the
accuracy of the model by selecting adequate discretization; however, at the expense of
complexity and computational performance.

By comparing predictions of the discussed models at Bmax = 1.5 T in Figure 2, similar
results are obtained. In this case, the most reasonable predictions are obtained using the Z-M
and the EB-Play models. The biggest deviation of the Z-Mmodel occurs at the smaller minor
loop. The EB-Play model deviates more at the knee region of the major loop. This can be
related to the fact that this model was identified only on the anhysteretic curve and coercive
field of the used material.

To further analyse the observed behaviour of the models at the ascending minor loop, the
amplitude of the fifth harmonic component was increased to 0.5 relative to the fundamental
component. The results for Bmax = 1.0 T and Bmax = 1.5 T are shown in Figures 3 and 4,
respectively.
The results in Figure 3 show that in this case, all the used models (including the J-A, TLN
and Z-Mmodels) predict bothminor loops as correctly closed. However, corresponding to
the results in Figures 1 and 2, the loops are still underestimated. It is however interesting
that the underestimation is bigger for the minor loops on the ascending branch of the
major loop (where the loop approaches saturation). It is also remarkable that the results
of the Z-Mmodel are reasonably better in this case and could be still improved with more
complex identification. The performance of the EB-Play model is also decent despite
simple parameter identification and could be also be improved using finer discretization
andmore complex identification procedures.

The results of the J-A and GRUCAD models show bigger deviations that could
be potentially improved using more complex identification based on extended
measurements. However, the expected improvement is not in the range of the Z-M and
EB-Play models.

In contrast to this, the accuracy of the Stop model can be increased only by finer
discretization (using higher Nh). However, using this measure, the prediction of minor loops
is still not adequate, as higher deviation in this region is a general drawback of this model
(Matsuo et al., 2003).

The accuracy of the TLNmodel cannot be adjusted at all, which is the main drawback of
this model.

5. Conclusion
This paper compares and analyses several widely used static hysteresis models under
distorted sinusoidal magnetization waveforms. The discussed models are identified using
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minimal required sets of measurements, where their accuracy is evaluated versus
corresponding measured magnetization curves. Such an analysis is valuable, especially for
applied engineering, where models that require simple parameter identification effort and
provide reasonable accuracy are more attractive for use. The presented analysis shows that
individual models exhibit different limitations to adequately reproduce static hysteresis,

Figure 3.
Comparison of static

hysteresis loops using
sinusoidal excitation
with superimposed

fifth harmonic
component of

amplitude 0.5 relative
to the fundamental at

Bmax = 1.0 T

–50 0 50 100 150

B 
(T

)

0

0.2

0.4

0.6

0.8

1

meas
J-A

–50 0 50 100 150
0

0.2

0.4

0.6

0.8

1

meas
GRUCAD

–50 0 50 100 150

B  
(T

)

0

0.2

0.4

0.6

0.8

1

meas
TLN

–50 0 50 100 150
0

0.2

0.4

0.6

0.8

1

meas
Z-M-HI

H (A/m)
–50 0 50 100 150

B 
(T

)

0

0.2

0.4

0.6

0.8

1

meas
Stop

H (A/m)
–50 0 50 100 150

0

0.2

0.4

0.6

0.8

1

meas
EB-Play

(a) (b)

(c) (d)

(e) (f)

Notes: (a) J-A model vs measurements; (b) GRUCAD model vs
measurements; (c) TLN model vs measurements; (d) Z-M-HI model vs
measurements; (e) Stop model  vs measurements; (f) EB-Play model vs
measurements

Static
hysteresis

models

787



especially for complex magnetization waveforms. From the results, it is apparent that
history-independent hysteresis models reach some limitations under strongly distorted
excitations such as the PWM-like ones. However, there are also promising candidates with
reasonable predictive power among the history-independent models, like the Z-M and EB-
Play models. Using additional measured data allows to fine-tune most of discussed the
hysteresis models.

Figure 4.
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with superimposed
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component of
amplitude 0.5 relative
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