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Abstract. The strong interaction between hysteresis and eddy currents in steel laminations subjected to a time-varying
magnetic field cannot be resolved without a coupled finite element modelling at the level of a single lamination. Direct
use of such a lamination model into the finite element modelling of an electrical machine, for instance, can be achieved by
homogenization methods which, however, make it necessary to modify the finite element code. In this paper, we propose
a pragmatic homogenization approach with no implementation required, provided the simulation code at hand has enough
flexibility in the description of the material laws. The lamination model is used to identify the parameters of an appropriate
macroscopic irreversible material law.

1. Introduction

An important aspect to be considered for the accurate calcu-
lation of iron losses in ferromagnetic laminated cores is the
strong interaction between eddy currents (skin effect) and hys-
teresis inside individual laminations. This interaction cannot
be resolved without a coupled finite element (FE) modelling at
the level of a single lamination. The direct use of such a model
in the FE modelling of a full electrical device (e.g. an electrical
machine, a transformer) can be achieved by homogenization
methods like those proposed in e.g. [1–3, 7]. Those methods,
however, are rather technical and make it necessary to modify
significatively the finite element code.

This paper proposes a pragmatic alternative, i.e. an homog-
enization strategy with no implementation required, provided
the simulation code at hand has enough flexibility in the de-
scription of the material laws. The lamination model, able to
resolve accurately the fields inside individual laminations is
used to identify the parameters of an appropriate macroscopic
irreversible material law. Once the material parameters are
identified, the behaviour of laminated cores at higher frequen-
cies and in the presence of higher harmonics can be accounted
for in the macroscopic FE model.

The paper is organized as follows. Section 2. succinctly de-
scribes the 1D single sheet magnetodynamic model. From this
model, which accounts for eddy currents and hysteresis, a re-
lationship between the macroscopic flux density and magnetic
fields is obtained as explained in section 3.. The implementa-
tion of the homogenized model is then described in section 4..

2. 1D single sheet FE model

The quantitative description of the interplay between hysteresis
and eddy currents in a single lamination done by solving one-
dimensional (1D) eddy current equations, which involves the
magnetic field strength h, the magnetic flux density b and the
electric field strength e in a material with a conductivity σ and
a non-linear hysteretic relationship b(h).

Considering an individual lamination of thickness 2d with
an upper surface normal vector n = (0,0,1), the domain of
analysis ω is a line parallel to n, across half the thickness, and

far from the edges. The boundary condition at the center of
the lamination is curlh(0)× n = 0, whereas a given external
field h(d) is applied at the surface of the lamination. A h-field
formulation (1) is preferred because the magnetic field is the
natural driving quantity of the hysteretic behaviour. The FE
equations are∫

ω

(
ḃ(h,history) ·h′+σ

−1curlh · curlh′
)

dω = 0 ∀h′ (1)

with h≡ (0,h(z),0). The hysteresis behaviour is described by
the term ḃ(h,history) in (1). As an implementation, we use the
BH hysteresis model, developed in parallel by Bergqvist [4]
and Henrotte [5]. This flexible and accurate model builds on a
thermodynamic representation of magnetic hysteresis in terms
of an energy density ρΨ (consisting of a stored energy term and
an empty space term) and a friction-like dissipation potential
ρ̇Q :

ρ
Ψ = ρst(J)+µ0

h2

2
, ρ̇

Q = κ
∣∣J̇∣∣ . (2)

Practically, the saturation of the material is represented by
the anhysteretic curve, i.e. a curve giving the magnetic suscep-
tibility χ := J/hr as a function of |hr|2, with hr ≡ ∂Jρst the
vector field that represents the history of the material. The flux
density is then

b(h,hr) = µ0h+χ(|hr|2) hr, (3)

and its time derivative in terms of the unknown h writes (note
the dyadic product hrhr)

ḃ(h,hr) =

(
µ0 +

(
χ(|hr|2)I+2χ̇(|hr|2) hrhr

)
∂hhr

)
ḣ≡ µ

∂ ḣ

where I is the identity. More details are found in [6] or in the
full paper.

A typical discretization is done with 50 equidistant nodes
and 360 time steps per period. Iron losses per unit surface are
given by the flux of the Poynting vector e(d)×h(d) across the
lamination surface. Simulation results obtained with the single
sheet model are shown in Fig. 1.
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Figure 1. The top picture shows the true b− h cycle (at the surface
at in the middle of the sheet), as well as the apparent (measurable)
< b >−h cycle in the presence of higher harmonics. The bottom pic-
ture shows h and e fields at the lamination surface in the same situa-
tion. Iron losses evaluate as the product of these two curves.

3. Homogenization

The relation between the single lamination model and the
macroscopic FE model is described by the homogenization
relationships :

|H|= h(d) , |B|=< b >≡ 1
d

∫ d

0
b(z)dz. (4)

The idea of the pragmatic two-scale model is to identify from
simulations with the single lamination model a regular material
relationship of the form

Hhom = ν(B)B+λ (B,Hc)Ḃ. (5)

where the function ν(B) is the parametric representation of a
general reluctivity curve and the function λ (B,Hc) is another
parametric function with a cut-off at the value Hc related with
the coercivity of the considered material. As a first step, this
relationship is assumed isotropic. The parameters of the func-
tions ν(B) and λ (B,Hc) are identified by the least squares
method.

4. Homogenized FE model

We shall denote fields at the macroscopic scale with a capital
letter. The most widely used formulation for electrical applica-
tions is the magnetic vector potential A 2D formulation. The
weak formulation of Ampere’s law then reads :∫

Ω

Hhom · curlA′dΩ =
∫

Ω

js ·A′ dΩ ∀A′ (6)

with js the current density and Hhom given by (5). Figure 2 and
3 represent the magnetic flux density waveform along the lami-
nation sheet over a period in time on the surface and in the mid-
dle of the sheet at two different magnetic flux density levels.
The classical skin effect is clearly recognized at a flux density
level of 1T. In contrast, it is realized that in case of a saturated
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Figure 2. Left: Magnetic flux density along the lamination sheet over
a period in time at B = 1T and f = 1000Hz. Right: Corresponding
hysteresis loops.
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Figure 3. Magnetic flux density along the lamination sheet over a
period in time at B = 1.3T and f = 1000Hz. Right: Corresponding
hysteresis loops.

material, i.e., B = 1.3T, the skin effect disappears and a satu-
ration front moves through the material. At a larger frequency,
skin effect still dominates. Looking at the instantaneous pro-
files of B within lamination depth, it is apparent that these pro-
files are not spatially uniform. Saturation naturally limits the
increase of B, but an important phase-shift appears between B
waveforms located at different depths within sheet. This gives
rise to a phenomena, a kind of saturation front, that strongly
affects the loss mechanism. Calculating these instantaneous
magnetic flux density profiles, it is evident that, the induced
eddy currents strongly influence the local B-H dynamic cycles,
compare Fig. 2 and 3. This underlines the necessity to solve
the strongly coupled phenomena, hysteresis and induced non-
local eddy currents, simultaneously. Disregarding this, leads to
significant differences in field and loss predictions.
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