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Abstract

Purpose – The introduction of stochastic deviations due to production faults into the finite element (FE)
simulation of electrical machines requires suitable error-model. These models should describe the
occurring deviations from the ideal case. Permanent magnets, which can be used as rotor excitations in
synchronous machines (PMSM), are one out of many possible sources for the aforementioned stochastic
production variations. Fitting measured magnet variations to simulation models with the aim of
describing the occurring production deviations, however, poses a problem due to two reasons: to begin
with, only data of measured flux-densities are available. Second, a solution of the inverse problem is
required to obtain data about changes inside the magnet. This paper, therefore, presents two solutions
to this problem.

Design/methodology/approach – Two error-models, one based on knowledge about the
magnetisation process, the other one built upon principal component analysis, are presented.
Both models are evaluated by parametrising them, using a set of measured flux-density data from
magnets. Afterwards, each model’s applicability and reproduction quality is assessed.

Findings – Both models still have some drawbacks. While the first model seems to be too coarse
grained for certain variations, the second model lacks applicability for a high reproduction quality.

Originality/value – The comparison of both methods reveals guidelines, which methodology should
be applied for predicting which variations. Furthermore, solutions are shown, how to mitigate the
problems of the two presented models.

Keywords Finite element method, Model evaluation, Inverse problem, Magnetisation error,
Stochastic deviation
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1. Introduction
Most electrical machines nowadays can be distinguished by two groups: on the one
hand, there are highly specialised machines, produced in small numbers and strongly
optimised towards one or several constraints (typical examples are applications in
medical care and military) and on the other hand machines produced in bulk
production (used in automotive or household appliances). As this set represents the
largest market share it is typically constructed using a robust design pattern
(Wang et al., 1999), in order to minimize the influence of production variations onto the
targeted nominal machine data. The rising cost pressure of mass production, however,
enforces the usage of more cost effective materials and processes, resulting in an
increasing number of deviating input conditions. In consequence, the robust design of a
machine becomes more difficult and needs to be verified.

Tools for the propagation of uncertainties across electromagnetic models recently
came into the focus of research and development and are available, as for instance the
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spectral stochastic finite element (FE) method (Ghanem and Spanos, 2003), applying
stochastic Galerkin (Rosseel et al., 2010) or non-intrusive projection/regression methods
(Sudret, 2007). Nevertheless, for some input variables, e.g. magnets in a PMSM, valid
deviation-models for the employment in simulation as well as information about
realistic parameters (likelihoods) for these models still are missing.

Until now, most deviation-models are based upon simple assumptions. In the case
of magnets this typically means the hypothesis of an over the magnet constant
variation in its remanence flux-density or magnet misplacement on the rotor
(Gasparin et al., 2009), their occurrence being based upon a Gaussian probability
density function (PDF) (Heins et al., 2011). These postulations obviously reduce the
result quality of the new sophisticated uncertainty propagation methods, because
the error-model’s precision directly influences the prediction quality of the entire
system. Hence these assumptions need either to be proven or in case of inaccuracy to
be enhanced.

In order to improve prediction quality when compared to the aforementioned
models, a physically motivated model ( Jurisch, 2007), representing the state of the art
and being deduced from the magnet production process, is compared to a new,
non-physical model which is based on the idea of a superposition of multiple
independent magnet fragments. Both models are parametrised using a set of
self-conducted radial flux-density measurements along the surface of each magnet.

As a result, the advantages and drawbacks of both techniques are compared using
measured magnetisation curves. Furthermore, it is shown how to mitigate the
problems of the two presented models. The results finally allow a finer grained and
therefore more accurate simulation of PMSMs under the consideration of intrinsic
magnet deviations arising from the production process.

2. Models
In order to include variation analysis of electrical machines into “conventional”
FE analysis, propagation methods and variation models are needed to consider the
system’s uncertainties. This section presents two possible magnetisation variation
models, which themselves are independent of the FE, but have to fulfil the typical
boundary conditions of FE before being applied there. The fulfilment of the boundary
conditions is however considered as given here, moving considerations concerning the
models’ application in FE simulation into Section 4.

2.1 Model A – production process based modelling
Model A is based on the knowledge about the production process and comprises
a subset of the presented variations in Jurisch (2007). Two possible variations are
allowed:

(1) j1. Constant, global changes in the magnet’s remanence flux-density (Figure 1(a)).
Such variations can arise either from a weaker remanence flux-density created in
the magnetisation process, or an error in the main direction of the targeted
magnetisation angle, resulting again in a weaker flux-density in the magnet’s
radial flux-density component.

(2) j2. Spatial deviations of the remanence flux-density depending on the angle Da
relative to the magnet’s middle amid (Figure 1(b)). This parameter represents
magnetisation disturbances that arise from a magnetic field which is applied to
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the green body of the magnet during its pressing step of the production process
and is used to align magnet particles. This field is not necessarily the same field
as the one used in the magnetisation process and may deviate in its orientation,
especially towards the magnet’s edges. The resulting flux-density therefore will
be a superposition of this field with the intended magnetisation field.

The effective description of the magnetic excitation therefore is extended by the
random variables j1, j2 and the angle difference Da with respect to the magnet’s
middle amid and can be written in a Cartesian decomposition as:

~BðDa; j1; j2Þ ¼ Brðj1Þ ·

cosðamid þ Daðj2ÞÞ

sinðamid þ Daðj2ÞÞ

0

0
BB@

1
CCA ð1Þ

2.2 Model B – segmented magnetisation model
Determining the PDF of the random variables described in Section 1 proves to be
difficult due to the necessary solution of the inverse problem and a certain information
loss as described in Section 4. This new model hence is motivated by the variation
analysis of measurement data (Jolliffe, 2002) and bases upon the following steps:

. At first, a principle component analysis (PCA) of the radial flux-density
measurement data for all magnets is performed.

. In parallel, a segmented model of the magnet under test is created, treating the
magnet as a sum of one mm wide, directly adjacent located segment parts
(Figure 2). The radial flux-density along the measurement circumference is
simulated for one single segment, setting the excitation for all other segments to
zero, stepwise executing this procedure for all magnet segments.

. The first principal component of the PCA is approximated using a weighted sum
of all single segment excitations. This process is comparable to signal
reconstruction from a sampled, digital signal as described in Vaseghi (2007)

Figure 1.
Considered magnet
variations (grey) in

contrast to ideal
magnetization (black)

for model A

(a)

∆a

amid

(b)

Notes: (a) Constant remanence flux-density weakening, modelled by parameter x1;
(b) angle deviations, growing in dependence of their distance towards the magnets
edges, modelled by parameter  x2
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and afterwards repeated for all significant principal components.
Principal components, whose influence on the absolute measurement variance
is below a certain limit (e.g. 0.5 percent), are defined to be insignificant and
therefore neglected.

. The weighted PCA approximation coefficients are implemented into the
magnet-model for each magnet segment.

. Realisations of different magnetisations can finally be created using weighted
accumulations of the principal components according to their probability of
occurrence.

Using this approach, the magnet is modelled as the superposition of a set of different
magnetisation shapes (respectively principal components), each shape depending on a
random variable ji , yielding equation (2):

~Bða; ~j Þ ¼
Xn
i

MiðaÞ ·XðjiÞ ð2Þ

3. Measurements
In order to evaluate the presented magnetisation fault models and determine the intrinsic
remanence flux-density variations for a given set of magnets, a test-bench as shown in
Figure 3 has been constructed. There, the magnets are rotated around the x-axis of the
mounting, allowing a measurement of the radial flux-density component in the picture’s
y-direction with a Hall-sensor. In this way, 52 magnets have been measured pointwise
along a constant circumference above each magnet’s surface. Twenty six magnets have
got their north-pole on the outer side, the other is oriented group vice-versa.

The results for the “north-up” group of magnets are shown in Figure 4.
Repetition measurements to determine the reproducibility of the test-bench have been
taken. The goal was to prevent manual misplacement errors to be mistaken for
magnetisation errors. Differences between repetitive measurements were found to be
below 0.5 percent. Remanence flux-density variations between different magnets were
determined to exceed 25 percent in the worst case.

4. Results
For both models the challenge consists in the solution of the inverse problem. Hence the
goal for each magnet is to find a set of parameters in the FE-models, which reflect the
measured flux-density with the least possible error. For both model parametrisations,

Figure 2.
Considered segmented
magnet model, for the
purpose of clearness
shown with a reduced
number of segments
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a 2D-FE model is selected, because its accuracy above the magnet proves to be sufficient
precise. This selection furthermore allows a considerable reduction of simulation time
when compared to 3D-simulations having the same mesh-density along the magnet’s
circumference. The circumference beside the magnet is not considered in the following,
restricting evaluation to the arc-segment located above the magnet’s surface
(2308. . .3108), with the magnets middle located at the angle of 2708.

4.1 Model A – parametrisation
In the beginning, a full factorial sampling of the parameter space of j1 and j2 must be
simulated once using the selected FE model. Afterwards, the quadratic error of the
difference between the simulated radial flux-density Brad;sim and the measured radial
flux-density Brad;mes is minimised by optimal parameters selection of j1 and j2 using
least-square regression as given in equation (3):

Figure 3.
Sketch of the test-bench
used for measuring the

magnets’ radial
flux-density componentsx

y

z

encoder
magnet under test

hall sensor
step motor

rotation axis

magnet mounting

Figure 4.
Plot of Hall-voltages of the

radial flux-densities of
26 magnets measured

1.6 mm above each
magnet’s surface
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j1;j2

min
X3108

a¼2308

½Brad;simða; j1; j2Þ2 Brad;mesðaÞ�
2

�����

����� ð3Þ

Figure 5 shows the comparison between the optimal parametrised simulation results
and their corresponding measurements for two selected magnets. In the left graph
(Figure 5(a)), the automatic parameter detection offers a very good approximation in
the considered area of interest. The right graph (Figure 5(b)) shows the curve of a
damaged magnet. Here the applied algorithm detects different parameters than those
presented in the picture, resulting in a more compressed graph with a reduced j1.

In consequence, it can be deducted that the presented approach reproduces the
assumed variations in angle and strength of the flux-density very good. Local errors,
however, pose a problem for this model, as they cannot be accounted for in this
approach and furthermore result in a biased parameter detection.

4.2 Model B – parametrisation
For parameter determination of model B, a principal component analysis (PCA) over all
measured radial flux-densities of one group of magnets has to be performed (Figure 6).
Afterwards, the six most important principal components – consisting of the intended
magnetisation (Figure 6(a)) and its main deviations (Figure 6(b)) – must be
reconstructed. The applied segment model consists of 24 segments (Figure 8).

Figure 7 shows the reconstruction of the measured field using the weighted
PCA approach for the same two magnets as in Figure 5. For both magnets the PCA
approach allows a better field reconstruction. The price paid is an increase in random
variables by a factor three and a highly complicated and error prone implementation of
the magnetization configuration inside the FE, here requiring 144 parameters
per magnet and simulation.

Figure 8 finally depicts the FE-model of type B used to simulate magnet no. 13.
The weighted sum of the applied principal components yields a piecewise constant,
unidirectional magnetisation per segment. Each segment’s color saturation here
represents the strength of its magnetisation.

Figure 5.
Parametrised and scaled
FE-results (solid) in
comparison to
measurements (dashed)
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Notes: (a) Magnet #1, x1 = 1.047 and x2 = –0.05; (b) magnet #13, x1 = 0.95 and x2 = –0.15
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5. Conclusions
Two models for the representation of magnetisation deviations in permanent magnets
have been presented. Both models have been parametrised using FEM-simulations
and a set of self-conducted radial flux-density measurements along the surface of
52 magnet samples. Model A allows considerations of the production process, but is
not able to account for local magnet faults, which can be measured. Model B promises
more accuracy and enables the simulation of local magnet faults. Its bulkiness in terms
of additional random variables and the fact, that the postulated segmentation of the
magnets implicates discontinuous jumps in excitation are severe drawbacks which
seem to outweigh its benefits. In consequence model A is recommended for use in
typical machine design cycles, whilst model B should be only used for final
verification.

A promising step might be to fuse both models, in the way that model A might be
allowed to be superposed by local magnet faults. This would enable to consider local

Figure 6.
Results of the principal
component analysis for
all “north-up” magnets
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Figure 7.
Parametrised and scaled

FE-results (solid) in
comparison to

measurements (dashed)
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errors without an too expensive increment of random variables. Furthermore, the
resulting model would again be physical and therefore simplify to draw conclusions for
possible improvements of the production process. The next steps require to apply the
described models into a complete machine simulation to determine each model’s
resolution limit with respect to machine sizes as torque ripple or induced voltages.
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