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Abstract

Purpose – The purpose of this paper is to present a method for analyzing higher magnetic force
harmonics in electrical machines based on electromagnetic finite element simulation.

Design/methodology/approach – Sampling of air gap field solution data allows for a Fourier
decomposition of magnetic forces and flux densities. A two-dimensional convolution gives insight into
the spectral decomposition of forces responsible for acoustic noise, vibration and higher torque
harmonics.

Findings – The proposed approach seems especially suitable for synchronous machine models. The
influence of magnetic circuit design parameters that are difficult to calculate analytically on the
harmonic air gap content can be analyzed and the spectral force decomposition illustrated by means of
space vectors.

Originality/value – The approach is generalized to the convolution and analysis of arbitrarily
sampled two-dimensional data in this paper.

Keywords Electric machines, Magnetic measurement, Force measurement, Harmonics,
Finite element analysis, Vibration

Paper type Research paper

I. Introduction
Higher torque harmonics and magnetically excited noise are parasitic effects in
electrical machines. They are due to the harmonic forces in the air gap of the machine.
Acting on the permeable material of stator and rotor, not only a constant torque but
also additional torque harmonics are generated, as well as radial forces that excite
stator vibrations. These electromagnetic forces can be calculated from the air gap field.

Electromagnetic finite element method (FEM) analyses are used to calculate torques,
but also allow for a consideration of local values, such as the magnetic flux density
distribution in the air gap. This paper proposes to sample the air gap field solution data of
two-dimensional FEM simulations in time and space domain in order to perform a Fourier
decomposition and a subsequent two-dimensional periodic convolution of air gap field
data. This leads to a geometric addition of partial force components that can be visualized
by a space vector diagram. The method has been applied to the radial component of the air
gap field for noise analysis purposes (van der Giet et al., 2008), and it is generalized in this
paper to the convolution of arbitrary sampled two-dimensional data.

In the following method and its implementation are described. First, some basic
Fourier theory is introduced. For an analysis of torque harmonics and noise exciting
radial forces, the method is applied to a sinusoidally fed permanent magnet-excited
synchronous machine (PMSM) and induction machine (IM) model.
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II. Convolution approach
A. Two-dimensional Fourier decomposition and periodic convolution
Since the air gap field and the forces are periodic in time and space, they can be represented
by a Fourier series. Let p: R £ R ! R be continuously differentiable. One has:

pð~x; tÞ ¼
X1
n¼21

X1
m¼21

Pn;me
jðmDr ~xþnDvtÞ; ð1Þ

Dv ¼ 2p/T, Dr ¼ 2p/U with T, U . 0 the periods in time and space. The complex
Fourier coefficients are determined by:

Pn;m ¼
1

U

1

T

Z U

0

Z T

0

pð~x; tÞe2jðmDr~xþnDvtÞdtd ~x: ð2Þ

For a Fourier decomposition (Figure 1), many tools process sampled data yn,mby using the
discrete Fourier transformation (DFT). The two-dimensional DFT is defined by:

Fð yn;mÞ ¼ Yn;m ¼
XN21

l¼0

XM21

k¼0

yl;ke
22pjððnl=N Þþðmk=M ÞÞ; ð3Þ

where n ¼ 0 . . . (N 2 1), m ¼ 0. . . (M 2 1). In order to approximate the Fourier series
coefficients with Fourier transformation coefficients, a full space-time period U and T is
sampled with M and N equidistant steps. The double integral of equation (2) can be
approximated by sums, and after some rearrangements the coefficient approximation
results to:

Pn;m <
Yn;m

MN
: ð4Þ

Using Maxwell’s stress tensor, tangential force calculation is obtained by the
multiplication of normal and tangential air gap field components. The multiplication of
values of two sampled data sets zl,k and z0l;k becomes in the frequency-mode domain a
periodic convolution:

Figure 1.
One-dimensional Fourier

decomposition of the
output torque (van Riesen
et al., 2004) of the PMSM

model, n ¼ 4,500 rpm,
higher harmonics
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yn;m ¼ zn;m · z0n;m , Yn;m ¼ Zn;m*Z
0
n;m; ð5Þ

with:

Zn;m*Z
0
n;m ¼

1

MN

XN21

l¼0

XM21

k¼0

Z l;k · Z 0
n2l;m2k ;

l;k

X
Qn;m;l;k ·MN : ð6Þ

B. Sampling of FEM solution data
In practice, the sampled data are stored into arrays y, z and the two-dimensional DFT is
performed by a computer routine. The resulting matrices Y, Z contain the complex
Fourier transformation coefficients. Provided that a full space-time period is sampled,
the row number n of Y or Z corresponds to the temporal ordinal number and the
column number m corresponds to the spacial ordinal number, which is usually called
mode or number of pole pair. Each matrix entry Yn,m or Zn,m can be interpreted as a
one-dimensional sinusoidal wave. Assuming that matrix z contains sampled data of
the radial component of the magnetic flux density in the air gap, a single sinusoidal
wave can be expressed by:

brðx; tÞ ¼ 2
Zn;m

MN

����
���� Vs

m2
· cos mxþ nDvt þ arg

Zn;m

MN

� �� �
: ð7Þ

This notation is common in analytical considerations of higher air gap field harmonics,
( Jordan, 1950; Gieras et al., 2006). Note that the same harmonic wave is obtained by
inversion of the argument of the cosine function, and hence an inversion of the sign of
the ordinal numbers. This indicates the symmetry of the DFT transformed matrix:

Zn;m ¼ Z*2n;2m: ð8Þ

C. Calculation of magnetic forces
Based on the Maxwell stress tensor, the magnetic force vector can be expressed in
polar coordinates by:

p ¼ p t þ p r

¼ brh te t þ
1

2m0
½ðbrÞ2 2 ðbtÞ2�e r;

ð9Þ

where e t, e r are polar unit vectors. Discrete data of the radial and tangential air gap field
solution brn;m; b

t
n;m can be obtained by data sampling. Since the DFT is a linear map, a

Fourier transformation and a division by (MN)2 according to approximation (4) results to:

Fðpn;mÞ

ðMNÞ2
¼ Br

n;m*H
t
n;me

t þ
1

2m0
Br
n;m*B

r
n;m 2 Bt

n;m*B
t
n;m

h i
e r: ð10Þ

The tangential component of the air gap field is very small when compared to the radial
one. Therefore, equation (10) is frequently approximated by the simplified Maxwell stress
tensor. Then the Fourier series coefficients of the force densities result to:
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P n;m ¼
FðPn;mÞ

MN
¼

¼Pt
n;m

MN ·Br
n;m*H

t
n;m|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}e t þ

¼Pr
n;m

MN

2m0
·Br

n;m*B
r
n;m|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}e

r: ð11Þ

Two convolution products remain. The tangential forces generate the torque and the
radial forces are the main cause for vibration and noise radiation of electrical machines.
Normally, the magnetic force density coefficients Pr

n;m and Pt
n;m are obtained by first

multiplying the air gap fields and transferring to the space-time domain. Alternatively,
using the convolution allows for a consideration of the summandsQn,m,l,k in equation (6) as
explored in the next section.

D. Visualization with a space vector diagram
Equation (6) shows that the matrix entries of Z are combined by pairs and add up to the
total Fourier transformation componentYn,m. The geometric addition can be supported by
an illustration in the complex plane called space vector diagram, Figure 2. Implemented to
a computer routine, partial force Fourier series summands Qn,m,l,k and the associated air
gap field pair. Fourier components are stored for a subsequent visualization.

In the following, the four pole PMSM is considered, Figure 3. A two-dimensional FE
simulation reveals that besides the constant torque component, undesired torque
harmonics emerge, especially at f ¼ 1,800 Hz, Figure 1. The proposed convolution
approach is applied. The radial magnetic flux density component b r and the tangential
magnetic strength component h t are sampled. The convolution routine transfers the
sampled data into the frequency-mode domain and generates the space vector diagram
of the corresponding tangential Fourier series component Pt

24;0, Figure 2. The vector
chain represents the geometric addition of partial force vectors:

Ql;k ¼ Br
l;k ·Ht

n2l;m2k: ð12Þ

The involved air gap field harmonic combination pairs are listed in Table I. The
ordinal numbers l, k, n 2 l, m 2 k and the angle have to be added according to
equations (6) and (12). Obviously, only a small number of pairs contribute significantly
to the total Fourier series force component Pt

24;0. The vectors Ql,k are arranged

Figure 2.
Space vector diagram,

I ¼ In

2|Pt
24, 0|      =  845 N/m2

arg (Pt
24, 0) = 132°

f = 1,800 Hz, n = 24, m = 0

Pt
24, 0

1Q26, –26

2Q–2, 26

3Q18, –18

4Q2, –2
5Q14, –14

6Q30, –30
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according to their magnitude. Only the first six partial force vectors are depicted.
Therefore, a small gap between the vector chain and the total force vector remains.

III. Application to machine models
A. PMSM model
A rule of thumb for predicting the frequency of the main parasitic torque harmonic is
the least common multiple of the number of poles and the number of stator slots,
LCM(2p, Ns) (Herranz Gracia, 2009). This harmonic is usually called cogging torque or
torque ripple. The considered PMSM has 24 slots, p ¼ 2 and the LCM is 24, Table II.
Since the speed of the machine is nn ¼ 4,500 rpm, the expected parasitic torque
frequency is f ¼ 1,800 Hz. The Fourier decomposition of the torque output of the used
FE software (van Riesen et al., 2004) meets this prediction, Figure 1.

The cogging component is due to the interaction of the magnetomotive force of the
magnets QM and the DC and fundamental component of the stator permeance function
L, shown in Figure 4, where m is the defined spacial ordinal number, g1, g2, g3 [ N and
f1 ¼ 150 Hz is the frequency of the fundamental air gap field component (Herranz
Gracia, 2009; Gieras et al., 2006). The analytically derived and involved air gap field

Figure 3.
Scaled cross sections of
example machines

(a) PMSM (b) IM

Vec l k 2 jB rj (Vs/m2) arg (B r)[8] f (Hz)

1 26 226 0.043677 0.0 1,950
2 22 26 0.027674 46.5 2150
3 18 218 0.081638 180.0 1,350
4 2 22 1.053000 6.6 150
5 14 214 0.141511 0.3 1,050
6 30 230 0.048354 180.0 2,250

Vec n 2 l m 2 k 2 jH tj (A/m) arg (H t)[8] f (Hz)

1 22 26 21,793 136.4 2150
2 26 226 12,481 90.1 1,950
3 6 18 1,559 225.12 450
4 22 2 113 66.5 1,650
5 10 14 795 102.3 750
6 26 30 2,028 51.4 2450

Table I.
Air gap field Fourier
series components for
I ¼ In
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components bM,DC and bM,S as well as the fundamental air gap field component b1 can
be assigned to the decomposition output of the convolution routine by means of their
analytically known ordinal numbers. Table III lists the involved air gap field
convolution pairs of two other simulated operating points I ¼ 0 and I ¼ 1.3 · In and
Figure 5 shows the geometric addition. The angle between stator field and rotor
position remains unchanged.

Using a sampling procedure and a DFT, a single sinusoidal wave is always
described by two Fourier coefficients together that differ only in the sign of their angle
and ordinal numbers according to equation (8). In Table III(b) the fundamental air gap
field component b1 appears two times with inverse values. In fact, both expressions
describe the same wave. On the contrary to this, the known analytical derivations
employ one expression for one sinusoidal wave by allowing only positive frequencies
or positive modes (Gieras et al., 2006).

Compared to the no load case (b), the parasitic force Pt
24;0 in (a) is increased in

magnitude and the angles are distorted, Figure 5. This can be attributed to the increase
of the tangential magnetic strength components H t generated by the stator currents.
Nearly, no new partial force vectors Ql,k do appear.

B. IM model
The introduced PMSM model offers an easy handling by sampling one rotor revolution
or only one pole pitch revolution. The air gap field of the IM revolves asynchronously
compared to the rotor. Thus, several rotor revolutions have to be simulated in order to
allow for a sampling of a complete time period. If a transient simulation is chosen,

Machine data PMSM IM

Rated power Pn 4 kW 30 kW
Rated speed nn 4,500 rpm 3,000 rpm
Rated voltage Vn 230 V 400 V
Rated current In 11.2 A 55.6 A
Power factor coswn – 0.875
Number of pole pairs p 2 2
Number of stator slots NS 24 24
PM material NeFeBo –
Outer stator diameter Do 110 mm 232 mm
Air gap sampling radius 29.29 mm 85.75 mm
Mechanical air gap d 0.8 mm 0.5 mm
Active length lFe 120 mm 127 mm

Table II.
Machine data

Figure 4.
Excitation of tangential

cogging forces

bM, DC

ΘM ΛSΘM ΛDC

bM, S
1
m0

p (1 + 2g1) = m m = p (1 + 2g2) ± g3NS

pt
cogging

f = ± f1 (1 + 2g2)± f1 (1 + 2g1) = f
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(a) l k 2 jB rj (Vs/m2) arg(B r)[8] f (Hz)
1 26 226 0.043481 0.1 1,950.0 b0M,DC

2 22 26 0.032443 53.1 2150.0 b0
M,S

3 18 218 0.081647 2179.9 1,350.0 b0M,DC

4 14 214 0.141253 0.4 1,050.0 b0M,DC

5 2 22 1.055650 8.6 150.0 b1

6 30 230 0.048323 180.0 2,250.0 b0M,DC

(a) n 2 l m 2 k 2jH tj (A/m) arg(H t)[8] f (Hz)
1 22 26 2,5561 143.0 2150.0 B0

M,S

2 26 226 1,2416 90.3 1950.0 b0M,DC

3 6 18 1,938 212.5 450.0 b0M,S

4 10 14 1,099 105.0 750.0 b0M,S

5 22 2 140 67.9 1650.0 b0M,S

6 26 30 2,506 245.7 2450.0 b0M,DC

(b) l k 2jB rj (Vs/m2) arg(B r)[8] f (Hz)
1 26 226 0.043507 20.2 1,950.0 bM,DC

2 22 26 0.018125 20.0 2150.0 bM,S

3 18 218 0.081554 180.0 1,350.0 bM,DC

4 22 2 1.051050 0.0 2150.0 b1

5 2 22 1.051050 20.0 150.0 b1

6 30 230 0.048426 179.9 2,250.0 bM,DC

7 14 214 0.141744 20.0 1,050.0 bM,DC

8 34 234 0.023964 0.0 2,550.0 bM,DC

(b) n 2 l m 2 k 2jH tj (A/m) arg(H t)[8] f (Hz)
1 22 26 14,322 90.0 2150.0 bM,S

2 26 226 12,388 89.8 1,950.0 bM,DC

3 6 18 991 290.0 450.0 bM,S

4 26 22 75 290.6 1,950.0
5 22 2 59 90.3 1,650.0
6 26 30 1,293 290.1 2450.0 bM,S

7 10 14 388 90.0 750.0 bM,DC

8 210 34 2,233 290.0 2750.0 bM,DC

Table III.
Air gap field components
for (a) I ¼ 1.3 · In and
(b) I ¼ 0

Figure 5.
Space vector diagrams
for Pt

24;0

2|Pt
24, 0| = 1005 N/m2

arg (Pt
24, 0) = 138.6°

f = 1,800 Hz, n = 24, m = 0

1

2

3

4

5

6

(a) I = 1.3 In

2|Pt
24, 0| = 537 N/m2

arg (Pt
24, 0) = 90°

f = 1,800 Hz, n = 24, m = 0

1

2

(b) I = 0
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additional time steps are necessary to magnetize the rotor until steady state behavior is
reached. The considered IM has been simulated for slip s ¼ 0.008 and afterwards 62
rotor revolutions have been sampled.

The radial component of the magnetic forces is the main cause for
electromagnetically excited vibration and noise radiation. However, the intensity is
strongly determined by the distribution of the natural frequencies of the mechanical
housing. Also the modesm ¼ 26 . . . 6 with high mechanical amplifications are of special
interest in contrast to the torque, that is solely generated by forces with m ¼ 0. The
maximum air gap field components and their identification and the maximum forces are
listed in Table IV. The natural frequencies of the considered IM housing are unknown,
therefore the radial example force component isPr

2608;3 is singled out for analysis (Figure 6
and Table V). The partial force components are analogous to equation (12):

Ql;k ¼
1

2m0
Br
l;k ·Br

n2l;m2k: ð13Þ

2jB rj (Vs/m2) arg(B r)[8] n m f (Hz)

0.931856 247.3 250 22 100.806 fundam.
0.194274 215.2 250 22 100.806 stat. slot.
0.176265 2102.3 2,358 219 950.806 rot. slot.
0.166318 20.7 1,858 215 749.193 rot. slot.
0.106786 2161.8 250 226 100.806 stat. slot.
0.104127 169.9 250 46 100.806 stat. slot.
0.090524 25.4 750 26 302.419 saturation

2jP rj (N/m2) arg(P r) [8] n m f (Hz)

423,884 0.0 0 0 0.0 –
139,173 297.5 500 24 201.612 –
24,806 2168.7 2,608 3 1051.612 –
11,040 39.8 3,092 1 1246.774 –
10,510 63.2 1,000 4 403.226 –
7,924 235.0 608 25 245.161 –
5,093 136.7 2,108 25 850.000 –
4,510 68.5 500 2 201.612 –

Table IV.
Maximum air gap
field and magnetic
force components

(m ¼ 26 . . . 6), n $ 0

Figure 6.
Space vector diagrams

for Pr
2608;3

2|Pr
2,608, 3| = 24, 806 N/m2

arg (Pr
2,608) = –169°

f = 1051Hz, n = 2,608
m = 3

Pr
2,608, 3

1

234

5

6

(a) Calculated partial vectors

Sources: This paper approach; van der Giet et al.’ (2008) paper
approach

2|Pr
2,608, 3| = 24,806 N/m2

arg (Pr
2,608) = –169

f = 1,051Hz, n = 2,608
m = 3

Pr
2,608, 3

A
BC

(b) Combined partial vectors
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IV. Conclusions
The proposed method delivers a deeper insight into the generation of parasitic
magnetic forces in rotating electrical machines and may provide additional help for
understanding and calculation of higher harmonics beside the analytical approaches.
The influence of special design decisions, such as additional holes or notches, that are
difficult to calculate analytically, or factors, such as excentricities or certain current
shapes, can be analyzed by this way.

Since the output solution of any electromagnetic FEM software is the magnetic
vector potential and so the magnetic flux density, an analysis of permeance functions
or mmf distributions is not possible. The geometric addition of several air gap field
components, excited from different causes, can only be indirectly detected, for instance,
by two comparative simulation analyses.

The calculated torque of FEM software is strongly dependent on the mesh
refinement in the air gap (Herranz Gracia, 2009). This should also be valid for higher
air gap field harmonics. Further investigations concerning the influence of the air gap
element size and the sample density on the calculated local magnetic forces are to be
undertaken. Also a consideration of the neglected tangential air gap fields for the
calculation of radial forces is to be taken into account.

The effort and costs for an analysis of the harmonic content of an IM model is
considerable. Additionally, since a complete time period must be sampled, only discrete
operating points are possible. Therefore, the proposed analysis seems especially
suitable for synchronous machine models.
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Berücksichtigung fertigungsbedingter Abweichungen, Shaker Verlag, Institute of
Electrical Machines, RWTH Aachen, Aachen.
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